

NCL[®] Network Communications Technical Manual

Refer to the following publications for further information about the GPD333 and Modicon programmable controllers.

- MagneTek GPD333 Technical Manual Publication TM4333
- MagneTek GPD333 NCL Satellite Board Installation Sheet Publication 02Y00025-0385
- Modicon Modbus Plus Network Planning and Installation Guide
 Publication GM-MBPL-001
- Modicon Ladder Logic Block Library User Guide Publication 840 USE 101 00

MagneTek Support

MagneTekis Drives and Systems Division offers support services with over 26 sales/support offices, and 145 distributors throughout the United States.

If you should need further technical assistance after reviewing this manual please contact your local MagneTek representative.

Additional Services available:

Technical Support Center-

Provide telephone assistance related to installation, start-up, programming, and troubleshooting MagneTek drives and communication products. For technical phone support call 800/541-0939

Field Service Support-

Provide on-site technical assistance. Contact your local MagneTek representative for field service, or call 800/541-0939.

	Technical References / MagneTek Support	i
	Contents	1
Chapter 1	Introducing the NCL Network Overview How the Network Operates Major Components of the Network	1-1 1-2 1-2 1-2
Chapter 2	Installation of MB+/NCL Gateway Gateway Hardware Components Gateway Mounting Dimensions Gateway Setup Gateway SW1 Settings Gateway SW2 Settings	2-1 2-2 2-2 2-3 2-4 2-4
Chapter 3	Installation of GPD333 NCL Satellite Board Satellite Hardware Components Satellite Setup Satellite Board SW1 Settings Satellite Installation into the GPD333	3-1 3-2 3-2 3-2 3-5
Chapter 4	NCL Network Wiring Maximum Cable Length Wire Specification Connector Pinout and Orientation Gateway Connector Pinout and Orientation Satellite Connector Pinout and Orientation Installation of Terminating Resistor	4-1 4-2 4-3 4-3 4-3 4-4
Chapter 5	MB+ Network Wiring	5-1
Chapter 6	Types of Data Types of Data Available via NCL Satellite Groups of Memory Satellite Drive Registers Satellite Internal Registers Satellite Diagnostic Registers Gateway Groups of Memory Gateway Internal Registers Gateway Diagnostic Registers	6-1 6-2 6-3 6-3 6-3 6-4 6-4
Chapter 7	Modbus Plus MSTR Function MSTR Control Block MSTR Data Block MSTR Area Size Read Function Write Function Global Write Function	7-1 7-3 7-8 7-8 7-9 7-9 7-10

Chapter 8	Special NCL Registers Selecting Satellite Groups Saving Data with the ENTER Command Using Satellite Data Code 00h Enabling the Gateway Module to Receive Global Data Enabling the Satellite Board to Receive Global Data The Global Frequency Reference Multiplier Origin of the RUN/STOP and Frequency Reference Commands Using Satellite Drive Register 01h	8-1 8-2 8-3 8-4 8-5 8-6 8-6 8-7 8-8 8-9
Chapter 9	Example #1 Write RUN/STOP and Frequency Reference Example #2 Read Output Frequency Example #3 Enable Global Data Example #4 Write Global RUN/STOP and Frequency Reference Example #5 Write Acceleration and Deceleration Times Example #6 Write a Global Frequency Reference Multiplier Example #7 Read all Drive Constants Example #8 Write all Drive Constants Example #9 Read the Drive Status Register	9-1 9-3 9-5 9-6 9-23 9-15 9-18 9-22 9-25 9-31
Chapter 10	Diagnostics and Troubleshooting Gateway LEDs Satellite LED MB+ MSTR Error Codes	10-1 10-2 10-3 10-4
Appendix A	Data Codes Satellite Drive Register Data Codes Satellite Internal Registers Satellite Diagnostic Registers Gateway Internal Registers Gateway Diagnostic Registers	A-1 A-2 A-9 A-9 A-10 A-11
Appendix B	Product Specifications	B-1
Appendix C	Spare Parts List	C-1

Chapter 1 Introducing the NCL Network

- Overview
- How the Network Operates
- Major Components of the Network

This manual describes the set-up and programming of the MagneTek NCL/Modbus Plus (MB+) communications hardware. The NCL/MB+ communication hardware will allow communication between a MODICON MB+ Communication Network and multiple MagneTek GPD333 drives.

How the Network Operates

NCL accommodates multiple devices (drives) on a single MB+ network node. From the MB+ network's perspective, up to 30 MagneTek drives are seen as one node, yet all are individually addressable. All drive control constants, status registers, and diagnostic registers are addressable via the NCL network. Each drive can receive <u>individual</u> read and write commands. Additionally, any or all drives on the network can be configured via software to receive <u>global</u> write commands.

The communications platform for the NCL network is based on the CAN (Controller Area Network) technology, which was first developed by Bosch for the automotive industry. Some of the benefits of this protocol are high noise immunity and high temperature operation. Because it uses a serial bus, it reduces signal wiring complexity and cost while providing high speed digital control for optimum performance. These benefits make NCL especially suitable for the industrial automation environment.

Major Components of the Network

An NCL network consists of two components:

- NCL Gateway module (quantity 1)
- NCL Satellite board (quantity 1 per drive)

Example NCL Network

The NCL Gateway module (MagneTek part number CM005) is a stand-alone, panel-mountable unit. The NCL Gateway provides the hardware and firmware required for connection and communication on a MB+ network. The Gateway module acts as a slave device on the MB+ network. A Gateway module will occupy one node on the MB+ network. The Gateway acts as a bridge between the MB+ network and the NCL network. The Gateway acts as a master to all of the Satellite boards (subnodes) on the NCL network.

One NCL Satellite board is installed in each drive. The NCL Satellite board provides the GPD333 drive with the ability to be communicate on the NCL network. The Satellite board acts as a slave device on the NCL network. A Satellite board will occupy one subnode on the NCL network. On the GPD333 (MagneTek part number CM006), it resides on the front of the drive in the location normally used by the status plate or the Digital Operator. Up to 30 NCL Satellite boards (drives) can be connected to one Gateway module. The Satellite board is powered from both the 24VDC NCL bus power and the drive that it is connected to.

The NCL network requires a user-supplied 24 VDC regulated power supply.

Chapter 2 Installation of MB+/NCL Gateway

- Gateway Hardware Components
- Gateway Mounting Dimensions
- Gateway Setup

The figure below shows the MB+ / NCL Gateway module. CONN1 is used for connection of the NCL network wiring. CONN2 is used for connection of the MB+ network wiring. SW1 is used to setup the NCL network baud rate and Gateway address. SW2 is used to setup of the MB+ network node number and cable loss behavior.

Gateway Mounting Dimensions

NOTE: All dimensions shown are in decimal inches.

Gateway Setup

The MB+ / NCL Gateway module requires setup prior to operation. Gateway SW1 and SW2 switches must be set prior to the application of 24 VDC power to the Gateway module. The states of these switches are read only on power-up.

Gateway SW1 Settings

The Gateway SW1 switch is used to setup NCL Network characteristics. The SW1 functions are defined in the following table:

Switch Number	Switch Function	
1	Baud Rate - bit 0	
2	Baud Rate - bit 1	
3	NCL Gateway Address - bit 0	
4	NCL Gateway Address - bit 1	
5	NCL Gateway Address - bit 2	
6	NCL Gateway Address - bit 3	
7	Not used	
8	Not used	

SW1 switches 1 and 2 are used to setup the baud rate of the NCL network. The baud rate setting of the Gateway module must match the baud rate setting of the Satellite boards that are connected on the NCL network. The available baud rates are defined in the following table. The following table also specifies the maximum total cable length of the NCL network that will be supported at each baud rate.

NCL	Gateway SW1 Position		Maximum
Baud Rate	0=off	1=on	Total
(KBaud)	2	1	Cable Length
125	0	0	500 meters
250	0	1	200meters
500	1	0	100 meters
	1	1	

SW1 switches 3, 4, 5, and 6 are used to setup the NCL Address of the Gateway module. Each NCL Gateway module on <u>one</u> NCL network must have a unique address. In the most common applications, there will be only one Gateway module per NCL network. The available address settings are defined in the following table.

NCL	Gateway SW1 Position				
Galeway		0=011	1=00		
Address	6	5	4	3	
01	0	0	0	1	
02	0	0	1	0	
03	0	0	1	1	
04	0	1	0	0	
05	0	1	0	1	
06	0	1	1	0	
07	0	1	1	1	
08	1	0	0	0	
09	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	

Gateway SW2 Settings

The Gateway SW2 switch is used to setup the MB+ Network characteristics. The SW2 functions are defined in the following table:

Switch Number	Switch Function
1	MB+ Node Address - bit 0 / LSB
2	MB+ Node Address - bit 1
3	MB+ Node Address - bit 2
4	MB+ Node Address - bit 3
5	MB+ Node Address - bit 4
6	MB+ Node Address - bit 5 / MSB
7	Cable Loss Enable
8	Not Used

SW2 switches 1 through 6 are used to setup the MB+ Node Address of the Gateway module. A MB+ Network can have up to 64 nodes. The available MB+ Node Address settings are defined in the following table.

Gateway MB+ Node	Gateway SW2 Position					
Address	6	5	4	3	2	1
01	1	1	1	1	1	1
02	1	1	1	1	1	0
03	1	1	1	1	0	1
04	1	1	1	1	0	0
05	1	1	1	0	1	1
06	1	1	1	0	1	0
07	1	1	1	0	0	1
08	1	1	1	0	0	0
09	1	1	0	1	1	1
10	1	1	0	1	1	0
11	1	1	0	1	0	1
12	1	1	0	1	0	0
13	1	1	0	0	1	1
14	1	1	0	0	1	0
15	1	1	0	0	0	1
16	1	1	0	0	0	0
17	1	0	1	1	1	1
18	1	0	1	1	1	0
19	1	0	1	1	0	1
20	1	0	1	1	0	0
21	1	0	1	0	1	1
22	1	0	1	0	1	0
23	1	0	1	0	0	1
24	1	0	1	0	0	0
25	1	0	0	1	1	1
26	1	0	0	1	1	0
27	1	0	0	1	0	0
20	1	0	0	0	1	1
30	1	0	0	0	1	0
31	1	0	0	0	0	1
32	1	0	0	0	0	0
33	0	1	1	1	1	1
34	0	1	1	1	1	0
35	0	1	1	1	0	1
36	0	1	1	1	0	0
37	0	1	1	0	1	1
38	0	1	1	0	1	0
39	0	1	1	0	0	1
40	0	1	1	0	0	0
41	0	1	0	1	1	1
42	0	1	0	1	1	0
43	0	1	0	1	0	1
44	0	1	0	1	0	0
45	0	1	0	0	1	1
46	0	1	0	0	1	U
47	0	1	0	0	0	1
40	0	0	1	1	1	1
50	0	0	1	1	1	0
51	0	0	1	1	0	1
52	0	0	1	1	0	0
53	0	0	1	0	1	1
54	0	0	1	0	1	0
55	0	0	1	0	0	1
56	0	0	1	0	0	0
57	0	0	0	1	1	1
58	0	0	0	1	1	0
59	0	0	0	1	0	1
60	0	0	0	1	0	0
61	0	0	0	0	1	1
62	0	0	0	0	1	0
63	0	0	0	0	0	1
64	0	0	0	0	0	0

SW2 switch 7 is used to enable or disable the cable loss feature. If cable loss is <u>enabled</u>, the Gateway will store the MB+ node number of the node which sent the last command to the Gateway module (acting as a ëmasterí to the Gateway module) The Gateway module will monitor the MB+ network for the activity of the ëmasterí node. If the ëmasterí node stops communicating on the MB+ network, the Gateway module will broadcast a stop command to all of the NCL Satellite boards which are connected. This stop command will cause all connected drives to stop. If cable loss is <u>disabled</u> and the ëmasterí node stops communicating, the drive will continue in its last state of operation. The following table specifies the applicable switch settings:

Gateway SW2 Position		
0=off 1=on		
Switch 7		
Cable Loss Disabled 0		
Cable Loss Enabled	1	

Chapter 3 Installation of the NCL Satellite Board

- Satellite Hardware Components
- Satellite Setup
- Satellite Installation into the GPD333

The figure below shows the NCL Satellite board. CONN1 is used for connection of the NCL network wiring. SW1 is used to setup the NCL network baud rate, the Satellite subnode number, and the power-up default for run/stop and frequency reference.

Satellite Setup

The NCL Satellite board requires setup prior to operation. Satellite SW1 switches must be set prior to the application of input AC power to the GPD333. The states of these switches are read only on power-up.

Satellite Board SW1 Settings

The Satellite SW1 switch is used to setup NCL Network characteristics. The SW1 functions are defined in the following table:

Switch Number	Switch Function
1	Baud Rate - bit 0
2	Baud Rate - bit 1
3	Operation and Frequency Remote/Local
4	Not Used
5	NCL Drive Subnode Address - bit 0 / LSB
6	NCL Drive Subnode Address - bit 1
7	NCL Drive Subnode Address - bit 2
8	NCL Drive Subnode Address - bit 3
9	NCL Drive Subnode Address - bit 4 / MSB
10	Not Used

SW1 switches 1 and 2 are used to select the baud rate of the NCL network. The baud rate setting of the Satellite board must match the baud rate setting of the Gateway module. The available baud rates are defined in the following table. The following table specifies the maximum total cable length of the NCL network supported at each baud rate.

NCL	Satellite SW1 Position		Maximum
Baud Rate	0=off	1=on	lotal
(KBaud)	2	1	Cable Length
125	0	0	500 meters
250	0	1	200 meters
500	1	0	100 meters
	1	1	

SW1 switch 3 is used to determine the <u>power-up</u> setting for satellite drive register 1Fh. Satellite drive register 1Fh is used along with drive register 31h to determine the origin for the Operation Signals (Run, Stop, Forward, Reverse, ...) and the Frequency Reference. The operation of registers 1Fh and 31h are explained in detail in chapter 8, i Origin of the RUN/STOP and Frequency Referenceî.

When ëRemoteí mode is selected with switch 3, satellite drive register 1Fh will be set to a value of 3 on power-up. In ëRemoteí mode, the operation signals and frequency reference will be received from the NCL network.

When *Elocalí* mode is selected with switch 3, satellite drive register 1Fh will be set to a value of 0 on power-up. In *Elocalí* mode, the operation signals and frequency reference will be received from the digital operator or the external terminals.

		Satellite	
	Operation Signal and	SW1 Position	Register 1Fh
	Frequency Reference		Value at
Source		3	Power-Up
Remote	From NCL Network	0	3
Local	From External Terminals OR Digital Operator	1	0

SW1 switches 5 through 9 are used to setup the NCL Subnode Address of the Satellite board. An NCL network can have up to 30 subnodes. The available NCL Subnode Address settings are defined in the following table.

Drive	Satellite SW1 Position				
Subnode	0=off 1=on				
Address	9	8	7	6	5
01	0	0	0	0	1
02	0	0	0	1	0
03	0	0	0	1	1
04	0	0	1	0	0
05	0	0	1	0	1
06	0	0	1	1	0
07	0	0	1	1	1
08	0	1	0	0	0
09	0	1	0	0	1
10	0	1	0	1	0
11	0	1	0	1	1
12	0	1	1	0	0
13	0	1	1	0	1
14	0	1	1	1	0
15	0	1	1	1	1
16	1	0	0	0	0
17	1	0	0	0	1
18	1	0	0	1	0
19	1	0	0	1	1
20	1	0	1	0	0
21	1	0	1	0	1
22	1	0	1	1	0
23	1	0	1	1	1
24	1	1	0	0	0
25	1	1	0	0	1
26	1	1	0	1	0
27	1	1	0	1	1
28	1	1	1	0	0
29	1	1	1	0	1
30	1	1	1	1	0

The NCL Satellite installs directly on the GPD333 drive in place of the standard status plate or optional Digital Operator display.

1. Disconnect all electrical power to the GPD333.

2. Remove the GPD333 access cover located on the bottom front of the drive (View A).

3. Check to ensure that the CHARGE indicator lamp (located inside the GPD333 on the bottom left corner) is not lit.

4. Verify that voltage has been disconnected by using a voltmeter to check for power at incoming power terminals (L1, L2, L3).

5. Gently press down on the plastic terminal board label strip located just below the status plate or Digital Operator (View B). Carefully lift upward on the bottom edge of the status plate/Digital Operator until the connector located on its back is released from the drive.

6. Verify that the ten-position dipswitch located on the back of the NCL Satellite board has been properly set up for your application.

7. Route the green pigtail ground wire of the NCL Satellite board through the rectangular opening in the drive chassis located in the area from which the status plate/Digital Operator was removed (View C). This ground wire should be connected to one of the drive ground terminals marked 'G'. The two drive ground terminals are located at the lower right and left corners of the GPD333.

8. Install the NCL Satellite board in the mounting recess (View C).

9. Replace the GPD333 access cover.

10. Insert the NCL network connector into CONN1 on the front of the NCL Satellite.

View B

Chapter 4 NCL Network Wiring

- Maximum Cable Length
- Wire Specification
- Gateway Connector Pinout and Orientation
- Satellite Connector Pinout and Orientation
- Installation of Terminating Resistor

The NCL Network has a linear bus topology. The total length of cable allowed in the network depends on the baud rate of data transmission. The cumulative cable length between any two points in the cable system must not exceed the Maximum Total Cable Length specified in the following table.

NCL	Gateway SV	Maximum			
Baud Rate	0=off	1=on	Total		
(KBaud)	2	1	Cable Length		
125	0	0	500 meters		
250	0	1	200 meters		
500	1	0	100 meters		
	1	1			

Wire Specification

The cable specified for NCL network connections is <u>Belden 3084A</u>. This cable consists of:

- One twisted signal pair (#24): blue/white
- One twisted power pair (#22): black/red
- Separate aluminized mylar shields around power pair and signal pair
- Overall foil/braid shield with drain wire (#22): bare

The following table shows the pinout used by the Gateway Module and the Satellite boards. The network is powered by a <u>user-supplied</u> 24VDC regulated power supply connected between pins V+ and GD. Power requirements for the Gateway and Satellite can be found in Appendix B, i Specificationsî.

Gateway CONN1	Satellite CONN1	DEFINITION	Belden 3084A Wire Color
Pin	Pin		
SH	SH	Shield	Bare
CL	CL	CAN Low	Blue
CH	CH	CAN High	White
GD	GD	GND	Black
V+	V+	+24 VDC	Red

The following figures show the pinout and orientation of the NCL network connectors. The Gateway connector is shown as it appears as CONN1 on the face of the Gateway module. The Satellite connector is shown as it appears as CONN1 on the face of the Satellite board.

Gateway Connector Pinout and Orientation

Satellite Connector Pinout and Orientation

Two terminating resistors must be installed between CAN Low (pin CL) and CAN High (pin CH) at the far ends of the NCL network. For example, in the NCL network shown in chapter 1, one terminating resistor must be installed between pins CL and CH on the Gateway module. The second terminating resistor should be installed between pins CL and CH on the Satellite board that is addressed as subnode 3.

The requirements for the terminating resistors are : 121 ohm, 1%, 1/4 Watt.

Chapter 5 MB+ Network Wiring

The Gateway module will be connected to the MB+ network via the 9 pin D-shell connector CONN2.

The recommended cable for MB+ network connections is <u>Belden 9841</u>. This cable consists of:

- One twisted signal pair: blue/white
- Drain wire: bare

•

• Overall aluminized mylar shield

This cable is available from Modicon as the following part numbers:

- 97-9841-100 MBPlus 100 Foot Reel
 - 97-9841-500 MBPlus 500 Foot Reel
- 97-9841-01K MBPlus 1000 Foot Reel

Two types of connectors are available from Modicon for connecting devices to the network. Each inline drop requires an inline connector. The two drops at the ends of the Modbus Plus network cable each require a terminating connector. When the terminating connectors are installed on the two extreme ends of the cable, no other termination is required.

- AS-MBKT-085
 MBPlus Inline Connector (quantity 1)
- AS-MBKT-185 MBPlus Terminating Connector (quantity 1)
- AS-MBPL-001 MBPlus Connector Assembly Tool

Chapter 6 Types of Data

- Types of Data Avaialble via NCL
- Satellite Groups of Memory
- Satellite Drive Registers
- Satellite Internal Registers
- Satellite Diagnostic Registers
- Gateway Groups of Memory
- Gateway Internal Registers
- Gateway Diagnostic Registers

Group Name	Group Location
Satellite Drive Registers	Satellite
Satellite Internal Registers	(per Subnode)
Satellite Diagnostic Registers	
Gateway Internal Registers	Gateway
Gateway Diagnostic Registers	(per Node)

NCL allows access to the five groups of data shown below.

A list of the registers contained in each group can be found in Appendix A of this manual.

Satellite Groups of Memory

Each Satellite board (subnode) on the NCL network will have three groups of data that can be accessed from the NCL network. These groups are referred to as Satellite Drive Registers, Satellite Internal Registers, and Satellite Diagnostic Registers. Each of the three groups has a unique group <u>number</u>. Each register in a group has a unique data code number. Therefore, to address any register on a Satellite, the following information must be known:

- MB+ Routing Path/Address of the Gateway Module
- Subnode Address of the Satellite Board
- Group Number of the Register
- Data Code Number of the Register

The following diagram illustrates how the satellite register groups are arranged in memory.

Satellite Drive Registers are registers used to configure the operation of a drive or monitor the status of a drive. In the case of the GPD333, the Satellite Drive Registers consist of the standard constants (no-01 through no-65) and the control constants. The group number for the Satellite Drive Registers is 0000h.

Satellite Internal Registers

Satellite Internal Registers are registers used to configure the operation of an individual satellite board. Satellite Internal Registers are used to enable global data capability and to setup a global frequency reference multiplier. The group number for the Satellite Internal Registers is F000h.

Satellite Diagnostic Registers

Satellite Diagnostic Registers are registers used to monitor the operation of an individual satellite board. Satellite Diagnostic Registers provide information on satellite run time, number of message transactions, number of message errors, and the nature of message errors. The group number for the Satellite Diagnostic Registers is F100h.

NOTE	
A lisintg of all data codes for Satellite and Gateway registers can be found in Appendix A of this manual.	

Each Gateway module (node) on the MB+ network will have two groups of data that can be accessed from the network. These groups are referred to as Gateway Internal Registers, and Gateway Diagnostic Registers. Each register in the Gateway has a unique data code number. Therefore, to address any register on a Gateway, the following information must be known:

- MB+ Routing Path/Address of the Gateway Module
- Data Code of the register

Gateway Internal Registers

Gateway Internal Registers are registers used to configure the operation of an individual Gateway module. Gateway Internal Registers are used to configure global data registers and to monitor the setup of the Gateway hardware switches.

Gateway Diagnostic Registers

Gateway Diagnostic Registers are registers used to monitor the operation of an individual Gateway module. Gateway Diagnostic Registers provide information on Gateway run time, number of message transactions, number of message errors, and type of messages.

NOTE	
A lisintg of all data codes for Satellite and Gateway registers can be found in Appendix A of this manual.	

Chapter 7 Modbus Plus MSTR Function

- MSTR Control Block
- MSTR Data Block
- MSTR Area Size
- Read Function
- Write Function
- Global Write Function

When using a Modicon programmable logic controller to access registers from a node on the MB+ network, an MSTR function block must be used. All Modicon controllers supporting the Modbus Plus communication protocol have a MSTR (Master) function block. The MSTR function block is used to initiate MB+ message transactions. Each type of network transaction has an associated operation code. The Modbus Plus transactions supported by NCL are:

MSTR Function	Operation Code		
Write Data	1		
Read Data	2		
Write Global Data	5		

The MSTR function block is a three section function block as shown below:

The MSTR function block has two control inputs. The ENABLE input enables the instruction when it is ON. The TERMINATE input terminates the active operation when it is ON.

The MSTR function block can produce three possible outputs. The OPERATION ACTIVE output goes ON while the instruction is active. The OPERATION TERMINATED output goes ON if an error occurs during the transaction or if the MSTR operation is terminated prior to completion. The OPERATION SUCCESSFUL output goes ON when an MSTR operation has been completed successfully.

When inserting a MSTR function block into the ladder logic, three pieces of data are required:

- 1. Control Block starting address
- 2. Data Block starting address
- 3. Maximum number of Data Block registers

MSTR Control Block

The data entered in the top section of the MSTR function block is the address of the <u>first</u> register in the Control Block. The Control Block is a sequential group of nine registers in the PLC. The Control Block registers are used to transfer information between the ladder logic and the MSTR function block.

Information transferred from the ladder to the MSTR include:

- the type of MB+ transaction (read/write/global write)
- the address of the drive (node and subnode)
- the data code of the first register to be transferred
- the number of registers that will be transferred
- the routing path to the drive

Information transferred from the MSTR to the ladder logic include:

• the status of the MB+ transaction.

The Control Block registers must have an address in the 4X range.

The Control Block registers are defined as:

CONTROL BLOCK								
Control Block Offset	MSTR Word Description	Comments						
4X + 0	Operation Code	1 = Multiple Register Write 2 = Multiple Register Read 5 = Write Global Data						
4X + 1	Network Error Code	Communication link status - returned from MB+ link						
4X + 2	Number of Registers	Length of the data area						
4X + 3	Register Address	Satellite Register Gateway Register	AADDh AA = Address of Satellite (subnode) DD = Data code for Satellite register DDDDh DDDD = Data code for Gateway register					
4X + 4	Routing 1	Routing re	gister #1 / local network					
4X + 5	Routing 2	Routing re	egister #2					
4X + 6	Routing 3	Routing re	egister #3					
4X + 7	Routing 4	Routing re	egister #4					
4X + 8	Routing 5	Routing re	egister #5					

The <u>Operation Code</u> (4X + 0) is used by the ladder logic to indicate the type of transaction that will be performed. Valid operation codes are defined in the following table:

MSTR Function	Operation Code		
Write Data	1		
Read Data	2		
Write Global Data	5		

The <u>Network Error Code</u> (4X + 1) is used by the MSTR to indicate the status of the transaction. If any error occurs during the transaction, an error code will be transferred into this register. A list of MB+ network error codes can be found in Chapter 10.

The <u>Number of Registers</u> (4X + 2) is used by the ladder logic to indicate the number of registers that will be transferred during this transaction. When writing multiple registers to the drive, the number in this register will indicate how many sequential registers will be written to. When reading multiple registers from the drive, the number in this register will indicate how many sequential registers will be read from.

The <u>Register Address</u> (4X + 3) is used by the ladder logic to indicate the address of the register to read/write. This PLC register is a two byte register. The most significant byte of this PLC register indicates the address of the Satellite subnode. The least significant byte of this PLC register indicates which register in the subnode to read/write. This byte of information is called the ëData Codeí. When accessing Gateway Registers, both bytes are used to indicate which register in the Gateway to read/write. This two byte value is also called the ëData Codeí. A list of data codes for the GPD333 Satellite board and Gateway module can be found in Appendix A.

The example shown below shows how to setup the <u>Register Address</u> to access acceleration time 1 (no-09) on the GPD333 Satellite with a subnode address of 5.

	MSB						LSB									
	NCL Satellite Address					Satellite Register Data Code										
Bit Number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex Value	0			Ę	5		3			9						

The example shown below shows how to setup the <u>Register Address</u> to access the Global Master Node Number register on the Gateway module.

	MSB						LSB									
	Gateway Data Code					Gateway Data Code										
Bit Number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex Value	F 0)		0			0							

Each NCL Gateway module will occupy one node on the Modbus Plus network. A single Modbus Plus network can have up to 64 addressable devices (nodes). Each device must have a unique node address between 1 and 64. If more than 64 devices are to be connected, multiple networks can be joined through bridge devices. A node can be addressed across bridge devices by specifying a network routing path. The <u>Routing 1, Routing 2, Routing 3, Routing 4, and Routing 5</u> (4X + 4, + 5, + 6, + 7, + 8) registers are used by the ladder logic to indicate the network routing path to a device.

The diagram on the following page illustrates an example network with NCL Gateway modules on a bridged network system.

The last routing register used must be set to ë1í. For host-based network adapters (such as the NCL Gateway module), this last routing register is used to specify a task number (0 to 7) to which the message is assigned. For the NCL Gateway this register must be ë1í.

Any unused routing registers must be set to ë0í.

The MSTR routing path register values for the example configuration shown on the previous page are:

Network A Routing								
Register [Description	1st NCL Gateway	2nd NCL Gateway					
Routing 1	Network A	6	7					
Routing 2	Task # = 1	1	1					
Routing 3	Not Used	0	0					
Routing 4	Not Used	0	0					
Routing 5	Not Used	0	0					

Network B Routing								
Register I	Description	1st NCL Gateway	2nd NCL Gateway					
Routing 1	Network A	5	5					
Routing 2	Network B	6	7					
Routing 3	Task # = 1	1	1					
Routing 4	Not Used	0	0					
Routing 5	Not Used	0	0					

Network C Routing								
Register	Description	1st NCL Gateway	2nd NCL Gateway					
Routing 1	Network A	5	5					
Routing 2	Network B	33	33					
Routing 3	Network C	3	4					
Routing 4	Task # = 1	1	1					
Routing 5	Not Used	0	0					

Network D Routing									
Register Description		1st GPD503	2nd GPD503	1st NCL Gateway	2nd NCL Gateway				
Routing 1	Network A	5	5	5	5				
Routing 2	Network B	33	33	33	33				
Routing 3	Network C	5	5	5	5				
Routing 4	Network D	2	3	4	5				
Routing 5	Task# = 1	1	1	1	1				

	NOTE															
The <u>Routing 1</u> serves a dual purpose. The low byte of <u>Routing 1</u> is used to specify the local node address. The high byte of <u>Routing 1</u> is used to specify which MB+ port on the PLC is to be accessed.																
←	▲ high byte						▶ ←				low byte					
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	

For a PLC with only one MB+ port, the value of the high byte of <u>Routing 1</u> should be set to zero. If you are using a PLC with more than one MB+ port the high byte is used to indicate which port will be accessed.

For an S985-002 card in a <u>984</u> chassis mount PLC, a value of 0 in the high byte indicates that the MSTR instruction is destined for the S985 card set for PLC port #2. For a <u>984</u> PLC with built-in Modbus Plus , a value of 0 in the high byte indicates that the MSTR is destined for the on-board Modbus Plus port.

For two S985-002 cards in a <u>984</u> chassis mount PLC, a value of 1 in the high byte indicates that the MSTR instruction is destined for the second S985 cardís assigned buffer space, For an S985-00 configuration in a PLC with built-in Modbus Plus, a value of 1 in the high byte indicates that the MSTR is destined for the S985 card set for comm port #2.

For two S985-000 cards in a <u>984</u> PLC with built-in Modbus Plus, a value of 2 in the high byte indicates that the MSTR instruction is destined for the second S985 cardís assigned buffer space.

To target a Modbus Plus Network Option Module (NOM) in a <u>Quantum</u> PLC backplane as the destination of an MSTR instruction, the value in the high byte represents the physical slot location of the NOM.

MSTR Data Block

The data entered in the middle section of the MSTR function block is the address of the <u>first</u> register in the Data Block. The Data Block is a sequential group of registers in the PLC. The Data Block registers are used to hold the data that will be transferred by the MSTR function block. For write operations, the Data Block is the source of the data. For read operations, the Data Block is the destination of the data.

The Data Block registers must have an address in the 4X range.

The size of the Data Block can range from 1 to 100 sequential registers.

MSTR Area Size

The data entered in the bottom section of the MSTR function block is the Area Size. The Area Size is an integer number that specifies the maximum number of registers that will be contained in the Data Block. Area Size must be a constant value ranging from 1 to 100.

The \ddot{e} Number of Registersí that is stored in the Control Block register 4X + 2 <u>must</u> be equal to or less than the Area Size. If this is not the case, the MSTR function will return an error.

An MSTR read function (operation code = 2) will read data from one slave device on the network. When using an NCL network, an MSTR read function can be used to acquire the following types of data:

- Satellite Drive Registers
- Satellite Internal Registers
- Satellite Diagnostic Registers
- Gateway Internal Registers
- Gateway Diagnostic Registers

An MSTR read function may take multiple scans of the PLC ladder to complete. Examples of reading drive registers can be found in Chapter 9, Example #2 (read output frequency), Example #7 (read all drive constants), and Example #9 (read drive status registers).

When reading from Satellite registers, the appropriate Satellite group must be selected before attempting the read. See Chapter 8 for details on selecting Satellite groups.

Write Function

An MSTR write function (operation code = 1) will write data to one slave device on the network. When using an NCL network, an MSTR write function can be used to send the following types of data:

- Satellite Drive Registers
- Satellite Internal Registers
- Satellite Diagnostic Registers
- Gateway Internal Registers
- Gateway Diagnostic Registers

An MSTR write function may take multiple scans of the PLC ladder logic to complete. Examples of writing drive registers can be found in Chapter 9, Example #.1 (write run/stop and frequency reference), Example #5 (write acceleration and deceleration), Example #6 (write global frequency reference multiplier), and Example #8 (write all drive constants).

When writing to Satellite registers, the appropriate Satellite group must be selected before attempting the write. See Chapter 8 for details on selecting Satellite groups.
An MSTR global write function (operation code = 5) will write data to all slave devices on the network. The global write function allows all slave devices on the MB+ network to receive the data at the same time. The Gateway module is a slave device on the MB+ network. When a Gateway module receives a global write command, it will pass the global write data to all slave devices (Satellite boards) on the NCL network. Therefore, the global write function allows all Satellite boards to receive data at the same time. NCL allows for a maximum of 3 global data registers. The global data registers must be sequential registers.

When using an NCL network, an MSTR global write function can be used to send the following types of data:

• Satellite Drive Registers

An MSTR global write function will take one scan of the PLC ladder logic to complete. An example of globally writing drive registers can be found in Chapter 9, Example #4 (write global run/stop and frequency reference).

Each Satellite that will receive global data must be initialized to do so. If a Satellite is not initialized to receive global data, it will ignore any global data that is transmitted on the NCL network. In addition to enabling global data on each Satellite, the Gateway module must also be initialized to receive global data. If a Gateway is not initialized to receive global data, it will ignore any global data that is transmitted on the MB+ network. For more information on enabling global data on the Gateway module and Satellite board, see Chapter 8.

Chapter 8 Special NCL Registers

- Selecting Satellite Groups
- Saving Data with the ENTER Command
- Using Satellite Data Code 00h
- Enabling the Gateway Module to Receive Global Data
- Enabling the Satellite Board to Receive Global Data
- Writing to the Global Frequency Reference Multiplier
- Origin of RUN/STOP and Frequency Reference Commands
- Using Satellite Drive Register 01h

The function of some of the registers associated with NCL require further explanation. This chapter will explain the following topics:

- Selecting Satellite Groups
- Saving Data with the ENTER Command
- Using Satellite Data Code 00h
- Enabling the Gateway Module to Receive Global Data
- Enabling the Satellite Board to Receive Global Data
- Writing to the Global Frequency Reference Multiplier
- Origin of RUN/STOP and Frequency Reference Commands
- Using Satellite Data Code 01h

Selecting Satellite Groups

The Satellite board has three groups of registers: Satellite Drive Registers, Satellite Internal Registers, and Satellite Diagnostic Registers. See chapter 6 for a description of each of the Satellite groups.

Before accessing a register from one of the Satellite groups, the correct group must be selected. Each group has been assigned a group number. Group numbers are shown in the following table.

Group Name	Group Number (hex)	
Satellite Drive Registers	0000h	⇐ power-up default
Satellite Internal Registers	F000h	
Satellite Diagnostic Registers	F100h	

To select a Satellite group, the group number must be written to the Satellite data code 00h. Therefore, to select the Satellite Drive group, a value of 0000h must be written to data code 00h. To select the Satellite Internal group, a value of F000h must be written to data code 00h. To select the Satellite Diagnostic group, a value of F100h must be written to data code 00h.

After a Satellite group has been selected, registers in that group can be accessed by the data codes which are listed in Appendix A.

Examples of selecting Satellite groups can be found in chapter 9: Example #3 (enable global data), and Example #6 (write global frequency reference multiplier).

On power-up, the default group is the Satellite Drive group.

The GPD333 has two types of memory: ëVolatileí and ëNon-Volatileí. Data held in Volatile memory will be lost when power is removed from the drive. Data held in Non-Volatile memory will be retained when power is removed from the drive or the satellite is removed from the drive. The following table shows where GPD333 data is held in memory.

Volatile Memory	Transfers	Non-Volatile Memory
Control Constants		
Data Codes 00h through 1Fh		
Standard Constants	\Downarrow	Standard Constants
no-01 through no-65	Power-Up	no-01 through no-65
Data Codes 30h through 71h	\Rightarrow	Data Codes 30h through 71h
	ëENTERí Command	
Satellite Internal Registers		
Data Codes 00h through 03h		
Satellite Diagnostic Registers		
Data Codes 00h through 07h		

The table above shows the Standard Constants residing in both Volatile and Non-Volatile memory. The data held in Volatile memory is the data that is used by the drive when running. The data held in Non-Volatile memory is only used for data storage during a drive power loss.

On power-up, the Standard Constants stored in Non-Volatile memory are transferred to Volatile memory.

If writing to the Standard Constants via NCL, the new data will be placed into Volatile memory. At this point, the new data will not be retained if a drive power loss occurs. In order for the new data to be retained, the ëENTERí command must be written to the drive. This would be synonymous to using the ENTER key on the optional drive keypad.

When the *ëENTER*í command is written, the Standard Constant data in Volatile memory is transferred to Non-Volatile memory.

The ëENTERí command is accomplished by writing a value of ë0í to data code 00h when the Satellite Drive group (group # 0000h) is selected.

Examples of writing the ëENTERí command can be found in chapter 9, Example #5 (write acceleration and deceleration), and Example #8 (write all drive constants).

NOTE

USE THE ëENTERI COMMAND ONLY WHEN NECESSARY! The life of the Non-Volatile EEPROM on the GPD333 will support a finite number of operations. This means that the ëENTERI command can only be used a maximum of 100,000 times to store data in the EEPROM. After the specified number of operations, the EEPROM may fault (CPF04) requiring the GPD333 to be replaced. After reading the previous two sections of this chapter, the operation of Satellite data code 00h may be confusing. Satellite data code 00h is a register that serves two purposes:

- ENTER Command
- Satellite Group Select

No matter which Satellite group is selected, data code 00h can be used to select another group. To select a new Satellite group, the group number is written to data code 00h.

The ENTER command is only possible when the Satellite Drive group (group # 0000) is selected. If the Satellite Drive group is selected, writing a value of ë0000í to data code 00h will execute an ENTER command.

If this ↓ group is selected	writing this \Downarrow	will do this \Downarrow
	0000h	execute the ENTER command
Satellite Drive Group	F000h	select the Satellite Internal group
Group # 0000h	F100h	select the Satellite Diagnostic group
	Any other value	no operation
	0000h	select the Satellite Drive group
Satellite Internal Group	F000h	no operation
Group #F000h	F100h	select the Satellite Diagnostic group
	Any other value	no operation
	0000h	select the Satellite Drive group
Satellite Diagnostic Group	F000h	select the Satellite Internal group
Group #F100h	F100h	no operation
	Any other value	no operation

The following table summarizes the possibilities:

The MSTR global write function (operation code = 5) will write data to all slave devices on the network. The global write function allows all slave devices on the MB+ network to receive the data at the same time. The Gateway module is a slave device on the MB+ network. When a Gateway module receives a global write command, it will pass the global write data to all slave devices (Satellite boards) on the NCL network. Therefore, the global write function allows all Satellite boards to receive data at the same time.

The Gateway module must be initialized to receive global data on the MB+ network. If a Gateway module is not initialized to receive global data, it will ignore any global data that is transmitted on the MB+ network.

Three of the Gateway Internal Registers are used to configure the Gateway module to receive global data. These registers are listed in the following table.

Gateway Internal Register	Power-Up Value	Register Description
F000h	0	Global Master Node Number
F001h	2	Global Number of Registers
F002h	01h	Global Starting Register

The data held in Gateway Internal Register <u>F000h</u> indicates the MB+ node address of the device (PLC) that will be sending global data to the Gateway module. The Gateway module will only accept global data that is sent from this device. To enable global data, write the MB+ node address (1-64) of the device sending global data to register F000h. To disable global data, write a ë0í to register F000h.

The data held in Gateway Internal Register <u>F001h</u> indicates the quantity of global registers that will be sent by the master node. NCL allows for a maximum of 3 global data registers. The global data registers must be sequential registers.

The data held in Gateway Internal Register <u>F002h</u> indicates the data code of the first Satellite Drive Register that will receive the global data. This register indicates the first of three (maximum) sequential registers.

The default values for F001h and F002h will configure Satellite Drive Registers 01h (operation command) and 02h(frequency reference) as the global data registers.

The Gateway Internal Registers are stored in Volatile memory. The power-up default value for Gateway Internal Register F000h is ë0í. This means that after a power loss, global data will be disabled at the Gateway module.

An example of enabling global data on the Gateway module can be found in Chapter 9, Example #3 (enable global data).

Enabling Global the Satellite Board to Receive Global Data

The MSTR global write function (operation code = 5) will write data to all slave devices on the network. The global write function allows all slave devices on the MB+ network to receive the data at the same time. The Gateway module is a slave device on the MB+ network. When a Gateway module receives a global write command, it will pass the global write data to all slave devices (Satellite boards) on the NCL network. Therefore, the global write function allows all Satellite boards to receive data at the same time.

The Satellite module must be initialized to receive global data on the NCL network. If a Satellite is not initialized to receive global data, it will ignore any global data that is transmitted on the NCL network.

Satellite Internal Register 01h is used to enable the Satellite board to receive global data. To enable global data, write a value of ë1í to this register. To disable global data, write a value of ë0í to this register. The power-up default value for Satellite Internal Register 01h is ë0í.

Satellite Internal Registers are stored in Volatile memory. The power-up default value for Satellite Internal Register 01h is ë0í. This means that after a power loss, global data will be disabled at the Satellite board.

An example of enabling global data on the Satellite board can be found in Chapter 9, Example #3 (enable global data).

In some applications, it will be necessary to change the frequency of multiple drives at the same time. The global write function can easily be used to write a single value for frequency reference to all of the drives connected on the NCL network. In this way, all the selected drives can receive the same frequency reference value at the same time.

System or process applications may require each drive to run at a different output frequency while changing speed simultaneously with other drives. For systems that require this feature, the Global Frequency Reference Multiplier can be used.

Satellite Internal Register 02h is the Global Frequency Reference Multiplier register. The power-up default value of this register is ë1.000í.

To make use of the Global Frequency Reference Multiplier, the Gateway registers F000h, F001h, and F002h must be setup to enable globally writing to Satellite Drive Register 02h (frequency reference) and Satellite Internal Register 01h must be a ë1í to enable global data.

When global data is properly initialized, the value written to Satellite <u>Drive</u> Register 02h (frequency reference) will be multiplied by the value of Satellite <u>Internal</u> Register 02h (global frequency reference multiplier) to produce the frequency reference value. This will allow each drive on the network to scale the global frequency reference that it receives.

The diagram below shows a global frequency reference value of 30.00 Hz being written to 3 drives. Each drive has a different Global Frequency Reference Multiplier value.

An example of using the Global Frequency Reference Multiplier can be found in Chapter 9, Example #6 (global frequency multiplier).

The drive can be configured to receive operation signals (Run, Stop, Forward, Reverse, ...) from the NCL network, the external drive terminals, or the digital operator. The second digit (bit 1) of Satellite Drive Register 1Fh and the second digit (bit 1) of Satellite Drive Register 31h (no-01) are used to setup the source of the operation signals. The following table indicates the possible binary configurations for the origin of the operation signals:

OPERATION SIGNALS ORIGIN									
1Fh	31h Source								
XX0X	XX0X	External Inputs - terminals 1, 2, and 3							
XX0X	XX1X	Digital Operator							
XX1X	XX0X	NCL Network (Data Code 01h)							
XX1X	XX1X	NCL Network (Data Code 01h)							

The drive can be configured to receive a frequency reference value from the NCL network, the external drive terminals, or the digital operator. The first digit (bit 0) of Satellite Drive Register 1Fh and the first digit (bit 0) of Satellite Drive Register 31h (no-01) are used to setup the source of the frequency reference. The following table indicates the possible binary configurations for the origin of the frequency reference:

FREQUENCY REFERENCE ORIGIN									
1Fh	31h Source								
XXX0	XXX0	Analog Input - terminals 8,9, and 11							
XXX0	XXX1	Digital Operator (Data Code 3Dh / no-13)							
XXX1	XXX0	NCL Network (Data Code 02h)							
XXX1	XXX1	NCL Network (Data Code 02h)							

The value of Satellite Drive Register 31h (no-01) may be stored in Non-Volatile RAM memory on the drive by use of the ENTER command. After the value has been ëenteredí, that value will be retained if the drive unit is powered down.

The value of Satellite Drive Register 1Fh is <u>not</u> stored in Non-Volatile RAM, and therefore, will <u>not</u> be remembered if the drive unit is powered down. The value of register 1Fh at power-up is determined by the position of Satellite SW1 switch 3. When switch 3 is off, drive register 1Fh will be set to a value of 3 (0011) on power-up. When switch 3 is on, drive register 1Fh will be set to a value of 0 (0000) on power-up. The setting of SW1 switch 3 is explained in detail in chapter 3.

NOTE	
Although Run/Stop and Frequency Reference control are possible over the network, hard-wired Estop circuitry should always be present.	

When the drive is setup to receive Operation Signals from the NCL Network, Satellite Drive Register 01h is used to operate the drive. This register performs multiple functions. Each of the first 6 bits of this register serves a different purpose. The remaining bits of this register are not used. The following diagram shows the function of each of the bits of this register. Bit 0 is the least significant bit of the register. Bit 15 is the most significant bit of the register.

	Most-Significant Byte							Least-Significant Byte														
Bit Number	1 5	1	ŀ	1 3	1 2	1 1		1 9 0	9	8	7	6	5	5	4	3	2	2 1	(0		
			•					~													$\frac{\text{it 0}}{\text{it 2}}$ $\frac{\text{it 3}}{\text{it 3}}$ $\frac{\text{it 4}}{\text{it 5}}$ 15	 0 = run 1 = stop 0 = forward 1 = reverse 0 = multi-function input#1 off 1 = multi-function input#2 off 1 = multi-function input#2 off 1 = multi-function input#3 off 1 = multi-function input#3 off 1 = multi-function input #3 on 0 = no operation 1 = fault reset
	Ļ																	01	15	0 -	•	Not Used

<u>Bit 0</u> is used to start and stop the drive. To command the drive to stop, this bit should be set to a ë0í. To command the drive to run, this bit should be set to a ë1í.

<u>Bit 1</u> is used to determine the direction of motion. To command the drive in the forward direction, this bit should be set to a ë0í. To command the drive in the reverse direction, this bit should be set to a ë1í.

<u>Bit 2</u> is used to turn multi-function input #1 on and off. To turn multi-function input #1 off, this bit should be set to a ë0í. To turn multi-function input #1 on, this bit should be set to a ë1í. The function of multi-function input #1 is determined by the setting of drive constant no-32.

<u>Bit 3</u> is used to turn multi-function input #2 on and off. To turn multi-function input #2 off, this bit should be set to a ë0í. To turn multi-function input #2 on, this bit should be set to a ë1í. The function of multi-function input #2 is determined by the setting of drive constant no-33.

<u>Bit 4</u> is used to turn multi-function input #3 on and off. To turn multi-function input #3 off, this bit should be set to a ë0í. To turn multi-function input #3 on, this bit should be set to a ë1í. The function of multi-function input #3 is determined by the setting of drive constant no-34.

NOTE

For a description of the operation of the multi-function inputs, no-32, no-33, and no-34 refer to the GPD 333 Technical Manual (TM 4333).

<u>Bit 5</u> is used to reset drive faults that have occurred. To allow the drive to run, this bit should be set to a e0i. To reset a drive fault, this bit should be momentarily set to a e1i. To reset a fault, the run/stop bit (Bit 0) must also be a e0i.

Some examples of using this register are shown in the following table.

Function	Binary Value	Decimal	Hex
Stop	0000 0000 0000 0000	0	0000
Run Forward	0000 0000 0000 0001	1	0001
Run Reverse	0000 0000 0000 0011	3	0003
Turn On	0000 0000 0000 0100	4	0004
Multi-Function Input#1			
Turn On	0000 0000 0000 1001	9	0009
Multi-Function Input#2			
while running			
Turn On	0000 0000 0001 0011	19	0013
Multi-Function Input#3			
while running reverse			
Reset	0000 0000 0010 0000	32	0020
Drive Fault			

Chapter 9 Examples

- Example #1 Write RUN/STOP and Frequency Reference
- Example #2 Read Output Frequency
- Example #3 Enable Global Data
- Example #4 Write Global RUN/STOP and Frequency Reference
- Example #5 Write Acceleration and Deceleration Times
- Example #6 Write a Global Frequency Reference Multiplier
- Example #7 Read all Drive Constants
- Example #8 Write all Drive Constants
- Example #9 Read the Drive Status Register

Examples

In the following examples, a Modicon PLC, two GPD503 variable frequency drives, and three GPD333 drives are connected via a MB+ network that is configured as follows:

Example #1 Write RUN/STOP and Frequency Reference to Drive #1

This example will show how to write a RUN FORWARD command and a 60.00 Hz frequency reference to a drive on the NCL network. This example assumes that the drive has been configured to accept Operation Signals and Frequency Reference from the NCL Network (Satellite Drive Registers 01h and 02h respectively).

In this example, an input to the PLC will be used to initiate the MSTR that will write the ëOperation Commandí and ëFrequency Referenceí. This input will be addressed at 10001.

The ëOperation Commandí register and the ëFrequency Referenceí register are sequential registers (see the Satellite Drive Register Table in Appendix A). Since these two registers are sequential registers, one MSTR function can be used to write to both registers.

In this example, the MSTR control registers will start at register 40010. The MSTR data registers will start at register 40020. There will be 2 MSTR data registers. The MSTR function inserted into the ladder logic would look like:

Segment: 01 Network: #00001 write run at 60 Hz to drive#1

The Control Block registers must be loaded with the following data before the MSTR block is executed:

CONTROL BLOCK								
Register	Register	Register	Data					
Number	Description	Data	Description					
40010	Operation Code	0001h	0001h = Write to Multiple Registers					
40011	Network Error Code	0000h	Zero the error code					
40012	Number of Registers	0002h	Write to 2 consecutive registers					
40013	Drive Address /	0101h	01XX = address of drive Satellite is 01h					
	Data Code		XX01 = data code of ëoperation signalí register is 01h.					
40014	Routing 1	0004h	MB+ node address of Gateway module = 0004h					
40015	Routing 2	0001h	End of routing path = 0001h (NCL requirement)					
40016	Routing 3	0000h	This routing register is not used, must be set to 0					
40017	Routing 4	0000h	This routing register is not used, must be set to 0					
40018	Routing 5	0000h	This routing register is not used, must be set to 0					

The Data Block registers must be loaded with the appropriate RUN/STOP and Frequency Reference data before the MSTR block is executed.

DATA BLOCK								
Register	Register	Register	Data					
Number	Description	Data	Description					
40020	Operation Signals	0001h	Run Forward = bit 0/on = 0001h					
40021	Freq. Reference	1770h	60.00 Hz = 6000 (decimal) = 1770h					

Example #2 Read Output Frequency from Drive #3

This example will show how to read the output frequency of a GPD333 drive on the NCL network.

In this example, an input to the PLC will be used to initiate the MSTR that will read the output frequency. This input will be addressed at 10002.

The Output Frequency is held in the register with data code 02h.

In this example, the MSTR control registers will start at register 40030. The MSTR data register will start at register 40039. There will be 1 MSTR data register. The MSTR function inserted into the ladder logic would look like:

The Control Block registers must be loaded with the following data before the MSTR block is executed:

CONTROL BLOCK								
Register	Register	Register	Data					
Number	Description	Data	Description					
40030	Operation Code	0002h	0002h = Read from Multiple Registers					
40031	Network Error Code	0000h	Zero the error code					
40032	Number of Registers	0001h	Read from 1 consecutive register					
40033	Drive Address /	0302h	03XX = address of drive Satellite is 03h					
	Data Code		XX02 = data code of ëoutput frequencyí register is 02h					
40034	Routing 1	0004h	MB+ node address of Gateway module = 0004h					
40035	Routing 2	0001h	End of routing path = 0001h (NCL requirement)					
40036	Routing 3	0000h	This routing register is not used, must be set to 0					
40037	Routing 4	0000h	This routing register is not used, must be set to 0					
40038	Routing 5	0000h	This routing register is not used, must be set to 0					

The Data Block register will be filled by the PLC with the Drive #3 Output Frequency data after the MSTR block has been executed.

DATA BLOCK				
Register	Register	Register	Data	
Number	Description	Data	Description	
40039	Freq. Reference	READ	60.00 Hz = 6000 (decimal) = 1770h	

Example #3 Enable Global Data for Drive #2 and Drive #3

This example will enable drive #2, drive #3, and the Gateway to receive global data. The global data registers will be the Operation Command register (data code 01h) and the Frequency Reference register (data code 02h).

In this example, an input to the PLC will be used to initiate the MSTRs that will configure the Satellite boards and the Gateway. This input will be addressed at 10003.

Each Satellite that will receive global data must be initialized to accept global data. If a Satellite is not initialized to receive global data, it will ignore any global data that is transmitted on the NCL network. To enable global data at the Satellite, the following MSTR transactions should be performed:

- Select the Satellite Internal Register Group by writing a F000h to data code 00h
- Enable global data by writing a ë1í to Satellite internal register 01h
- Select the Satellite Drive Register Group by writing 0000h to data code 00h

In this example, drive #2 and drive #3 will be initialized to receive global data.

In addition to enabling global data on each Satellite, the Gateway module must be initialized to receive global data on the MB+ network. If a Gateway is not initialized to receive global data, it will ignore any global data that is transmitted on the MB+ network. To enable global data at the Gateway, the following MSTR transaction should be performed:

• Write to the Gatewayis Internal Registers at data codes F000h, F001h, and F002h

The data written to F000h will indicate which MB+ node will be sending global data to the Gateway. In this example, the Gateway will be accepting global data from the PLC which is addressed at MB+ node 1. The data written to Gateway Internal Registers F001h and F002h is used to indicate which drive registers will receive the global data.. The data code of the first global Satellite Drive Register must be written to F002h. The number of global registers must be written to F001h.

This example requires multiple MSTR transactions. The following MSTR transactions will be performed:

	MSTR Transaction	Control Registers	Data Registers
1	Select the Satellite Internal Group on Satellite #2	40040	40049
2	Write Satellite #2 global data enable	40050	40059
3	Select the Satellite Drive Group on Satellite #2	40040	40049
4	Select the Satellite Internal Group on Satellite #3	40060	40069
5	Write Satellite #3 global data enable	40070	40079
6	Select the Satellite Drive Group on Satellite #3	40060	40069
7	Write Gateway Internal global data enable registers	40080	40090

The MSTR functions inserted into the ladder logic would look like:

Segment: 01 Network: #00007 enable global data on drive#3

(Ladder logic contiinued on next page)

(Ladder logic continued from preceding page)

done9

9-8 Examples

In this example, the MSTR blocks are executed sequentially. The Control Block and Data Block registers for the first MSTR must be loaded with the following data before the MSTR block is executed. This MSTR selects the Satellite Internal Register Group on drive #2.

	CONTROL BLOCK					
Register	Register	Register	Data			
Number	Description	Data	Description			
40040	Operation Code	0001h	0001h = Write to Multiple Registers			
40041	Network Error Code	0000h	Zero the error code			
40042	Number of Registers	0001h	Write to 1 register			
40043	Drive Address /	0200h	02XX = address of drive Satellite is 02h			
	Data Code		XX00 = data code of Group Select register is 00h.			
40044	Routing 1	0004h	MB+ node address of Gateway module = 0004h			
40045	Routing 2	0001h	End of routing path = 0001h (NCL requirement)			
40046	Routing 3	0000h	This routing register is not used, must be set to 0			
40047	Routing 4	0000h	This routing register is not used, must be set to 0			
40048	Routing 5	0000h	This routing register is not used, must be set to 0			

DATA BLOCK				
Register Register Data				
Number	Description	Data	Description	
40049	Group Select	F000h	F000h selects the Satellite Internal Register Group	

MSTR Transaction #2

The Control Block and Data Block registers for the second MSTR must be loaded with the following data before the MSTR block is executed. This MSTR enables global data on drive #2.

CONTROL BLOCK				
Register	Register	Register	Data	
Number	Description	Data	Description	
40050	Operation Code	0001h	0001h = Write to Multiple Registers	
40051	Network Error Code	0000h	Zero the error code	
40052	Number of Registers	0001h	Write to 1 register	
40053	Drive Address /	0201h	02XX = address of drive Satellite is 02h	
	Data Code		XX01 = data code of ëglobal enableí is 01h.	
40054	Routing 1	0004h	MB+ node address of Gateway module = 0004h	
40055	Routing 2	0001h	End of routing path = 0001h (NCL requirement)	
40056	Routing 3	0000h	This routing register is not used, must be set to 0	
40057	Routing 4	0000h	This routing register is not used, must be set to 0	
40058	Routing 5	0000h	This routing register is not used, must be set to 0	

DATA BLOCK				
Register	Register	Register	Data	
Number	Description	Data	Description	
40059	Internal: Global Enable	0001h	To enable global data, set this register to ë1í To disable global data, set this register to ë0í	

The Control Block and Data Block registers for the third MSTR must be loaded with the following data before the MSTR block is executed. This MSTR selects the Satellite Drive Register Group on drive #2.

	CONTROL BLOCK					
Register	Register	Register	Data			
Number	Description	Data	Description			
40040	Operation Code	0001h	0001h = Write to Multiple Registers			
40041	Network Error Code	0000h	Zero the error code			
40042	Number of Registers	0001h	Write to 1 register			
40043	Drive Address /	0200h	02XX = address of drive Satellite is 02h			
	Data Code		XX00 = data code of Group Select register is 00h.			
40044	Routing 1	0004h	MB+ node address of Gateway module = 0004h			
40045	Routing 2	0001h	End of routing path = 0001h (NCL requirement)			
40046	Routing 3	0000h	This routing register is not used, must be set to 0			
40047	Routing 4	0000h	This routing register is not used, must be set to 0			
40048	Routing 5	0000h	This routing register is not used, must be set to 0			

DATA BLOCK					
Register Register Data					
Number	Description	Data	Description		
40049	Group Select	0000h	0000h selects the Satellite Drive Register Group		

MSTR Transaction #4

The Control Block and Data Block registers for the fourth MSTR must be loaded with the following data before the MSTR block is executed. This MSTR changes to the Satellite Internal Register Group on drive #3.

CONTROL BLOCK					
Register	Register	Register	Data		
Number	Description	Data	Description		
40060	Operation Code	0001h	0001h = Write to Multiple Registers		
40061	Network Error Code	0000h	Zero the error code		
40062	Number of Registers	0001h	Write to 1 register		
40063	Drive Address /	0300h	03XX = address of drive Satellite is 03h		
	Data Code		XX00 = data code of Group Select register is 00h.		
40064	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40065	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40066	Routing 3	0000h	This routing register is not used, must be set to 0		
40067	Routing 4	0000h	This routing register is not used, must be set to 0		
40068	Routing 5	0000h	This routing register is not used, must be set to 0		

DATA BLOCK				
Register Register Data				
Number	Description	Data	Description	
40069	Group Select	F000h	F000h selects the Satellite Internal Register Group	

The Control Block and Data Block registers for the fifth MSTR must be loaded with the following data before the MSTR block is executed. This MSTR enables global data on drive #3.

CONTROL BLOCK					
Register	Register	Register	Data		
Number	Description	Data	Description		
40070	Operation Code	0001h	0001h = Write to Multiple Registers		
40071	Network Error Code	0000h	Zero the error code		
40072	Number of Registers	0001h	Write to 1 register		
40073	Drive Address /	0301h	03XX = address of drive Satellite is 03h		
	Data Code		XX01 = data code of ëglobal enableí register is 01h.		
40074	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40075	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40076	Routing 3	0000h	This routing register is not used, must be set to 0		
40077	Routing 4	0000h	This routing register is not used, must be set to 0		
40078	Routing 5	0000h	This routing register is not used, must be set to 0		

DATA BLOCK					
Register	Register	Register	Data		
Number	Description	Data	Description		
40079	Internal: Global Enable	0001h	To enable global data, set this register to ë1í To disable global data, set this register to ë0í		

MSTR Transaction #6

The Control Block and Data Block registers for the sixth MSTR must be loaded with the following data before the MSTR block is executed. This MSTR selects the Satellite Drive Register Group on drive #3.

	CONTROL BLOCK				
Register	Register	Register	Data		
Number	Description	Data	Description		
40060	Operation Code	0001h	0001h = Write to Multiple Registers		
40061	Network Error Code	0000h	Zero the error code		
40062	Number of Registers	0001h	Write to 1 register		
40063	Drive Address /	0300h	03XX = address of drive Satellite is 03h		
	Data Code		XX00 = data code of Group Select register is 00h.		
40064	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40065	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40066	Routing 3	0000h	This routing register is not used, must be set to 0		
40067	Routing 4	0000h	This routing register is not used, must be set to 0		
40068	Routing 5	0000h	This routing register is not used, must be set to 0		

DATA BLOCK				
Register Register Data				
Number	Description	Data	Description	
40069	Group Select	0000h	0000h selects the Satellite Drive Register Group	

The Control Block and Data Block registers for the seventh MSTR must be loaded with the following data before the MSTR block is executed. This MSTR enables global data at the Gateway by writing to the Gateway internal registers.

	CONTROL BLOCK				
Register	Register	Register	Data		
Number	Description	Data	Description		
40080	Operation Code	0001h	0001h = Write to Multiple Registers		
40081	Network Error Code	0000h	Zero the error code		
40082	Number of Registers	0003h	Write to 3 consecutive registers		
40083	Drive Address /	F000h	Data code of Gateway Internal register. This		
	Data Code		internal register is the ëglobal master MB+ node numberí.		
40084	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40085	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40086	Routing 3	0000h	This routing register is not used, must be set to 0		
40087	Routing 4	0000h	This routing register is not used, must be set to 0		
40088	Routing 5	0000h	This routing register is not used, must be set to 0		

	DATA BLOCK				
Register	Register	Register	Data		
Number	Description	Data	Description		
40090	Global Master Node Number	0001h	The MB+ node address of the PLC is 1 NOTE: To disable global data at the Gateway, write a value of 0000h to Gateway Internal Register F000h		
40091	Global Number of Registers	0002h	This example will write to 2 global registers		
40092	Global Starting Register	0001h	The 2 global data registers will start at data code 00h. The 2 global data registers are : 01h Operations Signals 02h Frequency Reference		

Example #4 Write Global RUN/STOP and Frequency Reference

This example will show how to write a global RUN REVERSE command and a 34.56 Hz frequency reference to all drives on the NCL network. This example assumes that the drive has been configured to accept Operation Signals and Frequency Reference from the NCL Network (Satellite Drive Registers 01h and 02h respectively).

NOTE	
For this operation to be valid, the Gateway module and Satellite boards must be initialized	-
to receive global data. Example #3 in this chapter discusses enabling global data.	

In this example, an input to the PLC will be used to initiate the MSTR that will write the Global ëOperation Commandí and ëFrequency Referenceí. This input will be addressed at 10004.

In this example, the MSTR control registers will start at register 40100. The MSTR data registers will start at register 40110. There will be 2 MSTR data registers. The MSTR function inserted into the ladder logic would look like:

Segment: 01 Network: #00010 write global run/stop and freq

The Control Block registers must be loaded with the following data before the MSTR block is executed:

	CONTROL BLOCK				
Register	Register	Register	Data		
Number	Description	Data	Description		
40100	Operation Code	0005h	0005h = Global Write		
40101	Network Error Code	0000h	Zero the error code		
40102	Number of Registers	0002h	Write to 2 consecutive registers		
40103	Drive Address /	XXXX	This register is not used when writing global data		
	Data Code				
40104	Routing 1	XXXX	This register is not used when writing global data		
40105	Routing 2	XXXX	This register is not used when writing global data		
40106	Routing 3	XXXX	This register is not used when writing global data		
40107	Routing 4	XXXX	This register is not used when writing global data		
40108	Routing 5	XXXX	This register is not used when writing global data		

The Data Block registers must be loaded with the appropriate Global RUN/STOP and Frequency Reference data before the MSTR block is executed.

DATA BLOCK				
Register	Register	Register	Data	
Number	Description	Data	Description	
40110	Operation Signals	0003h	Run Reverse = bit0/on, bit 1/on = 0003h	
40111	Freq. Reference	0D80h	34.56 Hz = 3456 (decimal) = 0D80h	

Example #5

Write Acceleration and Deceleration (no-09 and no-10) to Drive #1

This example will show how to write acceleration and deceleration times to a drive on the NCL network. After writing the new acceleration and deceleration times, the new data will be stored in Non-Volatile memory with the ENTER command.

In this example, an input to the PLC will be used to initiate the MSTRs that will write the acceleration and deceleration times (no-09 and no-10). This input will be addressed at 10005.

This example requires multiple MSTR transactions. The following MSTR transactions will be performed:

	MSTR Transaction	Control Registers	Data Registers
1	Write Accel and Decel registers	40120	40130
2	Write the ENTER command	40140	40149

The MSTR functions inserted into the ladder logic would look like:

Segment: 01 Network: #00011 write accel/decel to drive#1

Segment: 01 Network: #00012 enter data into non-volatile memory

In this example, the MSTR blocks are executed sequentially. The Control Block and Data Block registers for the first MSTR must be loaded with the following data before the MSTR block is executed. This MSTR writes to the Acceleration Time 1 register and the Deceleration Time 1 register to drive #1.

	CONTROL BLOCK				
Register	Register	Register	Data		
Number	Description	Data	Description		
40120	Operation Code	0001h	0001h = Write to Multiple Registers		
40121	Network Error Code	0000h	Zero the error code		
40122	Number of Registers	0002h	Write to 2 consecutive registers		
40123	Drive Address /	0139h	01XX = address of drive Satellite is 01h		
	Data Code		XX39 = data code of accel register is 39h.		
40124	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40125	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40126	Routing 3	0000h	This routing register is not used, must be set to 0		
40127	Routing 4	0000h	This routing register is not used, must be set to 0		
40128	Routing 5	0000h	This routing register is not used, must be set to 0		

DATA BLOCK				
Register	Register	Register	Data	
Number	Description	Data	Description	
40130	Acceleration Time 1	000Ah	1.0 sec = 10 (decimal) = 000Ah	
40131	Deceleration Time 1	0014h	2.0 sec = 20 (decimal) = 0014h	

The Control Block and Data Block registers for the second MSTR must be loaded with the following data before the MSTR block is executed. This MSTR will ENTER data into Non-Volatile memory on drive #1.

	CONTROL BLOCK				
Register	Register	Register	Data		
Number	Description	Data	Description		
40140	Operation Code	0001h	0001h = Write to Multiple Registers		
40141	Network Error Code	0000h	Zero the error code		
40142	Number of Registers	0001h	Write to 1 register		
40143	Drive Address /	0100h	01XX = address of drive Satellite is 01h		
	Data Code		XX00 = data code of ENTER register is 00h.		
40144	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40145	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40146	Routing 3	0000h	This routing register is not used, must be set to 0		
40147	Routing 4	0000h	This routing register is not used, must be set to 0		
40148	Routing 5	0000h	This routing register is not used, must be set to 0		

DATA BLOCK				
Register	Legister Register Data			
Number	Description	Data	Description	
40149	ENTER data into	0000h	To ENTER data into Non-Volatile memory, set	
	Non-Volatile memory		this register to ë0í	

Example #6

Write a Global Frequency Reference Multiplier to Drive #2

This example will write a global frequency reference multiplier of 0.500 to drive #2. The global frequency reference multiplier register is data code 02h in the Satellite Internal Register Group. The value of the multiplier can range from 0.001 to 9.999. Each Satellite that receives a global frequency reference will multiply the value received by the value in Satellite Internal Register 02h.

NOTE
For this operation to be valid, the Gateway module and Satellite boards must be initialized
to receive global data. Example #3 in this chapter discusses enabling global data.

In this example, an input to the PLC will be used to initiate the MSTRs that will write the reference multiplier to drive #2. This input will be addressed at 10006.

To write the global frequency reference multiplier, the following MSTR transactions should be performed:

- Select the Satellite Internal Register Group by writing F000h to data code 00h
- Change the multiplier by writing to Satellite Internal Register 02h
- Select the Satellite Drive Register Group by writing 0000h to data code 00h

This example requires multiple MSTR transactions. The following MSTR transactions will be performed:

	MSTR Transaction	Control Registers	Data Registers
1	Select the Satellite Internal Register Group on Satellite #2	40040	40049
2	Write to global reference multiplier register on Satellite #2	40150	40159
3	Select the Satellite Drive Register Group on Satellite #2	40040	40049

The MSTR functions inserted into the ladder logic would look like:

In this example, the MSTR blocks are executed sequentially. The Control Block and Data Block registers for the first MSTR must be loaded with the following data before the MSTR block is executed. This MSTR selects the Satellite Internal Register Group on drive #2.

	CONTROL BLOCK				
Register Register Register		Register	Data		
Number	Description	Data	Description		
40040	Operation Code	0001h	0001h = Write to Multiple Registers		
40041	Network Error Code	0000h	Zero the error code		
40042	Number of Registers	0001h	Write to 1 register		
40043	Drive Address /	0200h	02XX = address of drive Satellite is 02h		
	Data Code		XX00 = data code of Group Select register is 00h.		
40044	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40045	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40046	Routing 3	0000h	This routing register is not used, must be set to 0		
40047	Routing 4	0000h	This routing register is not used, must be set to 0		
40048	Routing 5	0000h	This routing register is not used, must be set to 0		

DATA BLOCK					
Register Register Data					
Number	Description	Data	Description		
40049	Group Select	F000h	F000h selects the Satellite Internal Register Group		

MSTR Transaction #2

The Control Block and Data Block registers for the second MSTR must be loaded with the following data before the MSTR block is executed. This MSTR writes the reference multiplier to drive #2.

	CONTROL BLOCK				
Register Register Register		Register	Data		
Number	Description	Data	Description		
40150	Operation Code	0001h	0001h = Write to Multiple Registers		
40151	Network Error Code	0000h	Zero the error code		
40152	Number of Registers	0001h	Write to 1 register		
40153	Drive Address /	0202h	02XX = address of drive Satellite is 02h		
	Data Code		XX02 = data code of reference multiplier is 02h.		
40154	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40155	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40016	Routing 3	0000h	This routing register is not used, must be set to 0		
40157	Routing 4	0000h	This routing register is not used, must be set to 0		
40158	Routing 5	0000h	This routing register is not used, must be set to 0		

DATA BLOCK					
Register Number	Register Description	Register Data	Data Description		
40159	Global Frequency Reference Multiplier	01F4h	0.500 = 500 (decimal) = 01F4h		

The Control Block and Data Block registers for the third MSTR must be loaded with the following data before the MSTR block is executed. This MSTR selects the Satellite Drive Register Group on drive #2.

	CONTROL BLOCK				
Register	Register	Register	Data		
Number	Description	Data	Description		
40040	Operation Code	0001h	0001h = Write to Multiple Registers		
40041	Network Error Code	0000h	Zero the error code		
40042	Number of Registers	0001h	Write to 1 register		
40043	Drive Address /	0200h	02XX = address of drive Satellite is 02h		
	Data Code		XX00 = data code of Group Select register is 00h.		
40044	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40045	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40046	Routing 3	0000h	This routing register is not used, must be set to 0		
40047	Routing 4	0000h	This routing register is not used, must be set to 0		
40048	Routing 5	0000h	This routing register is not used, must be set to 0		

DATA BLOCK					
Register Register Data					
Number	Description	Data	Description		
40049	Group Select	0000h	0000h selects the Satellite Drive Register Group		

Example #7 Read all Drive Constants (no-00 through no-51) from Drive #3

This example will read all of the drive constants (no-00 through no-51) from drive #3. In this example, an input to the PLC will be used to initiate the MSTRs that will read the drive constants. This input will be addressed at 10007.

This example requires multiple MSTR transactions. The following MSTR transactions will be performed:

	MSTR Transaction	Control	Data
		Registers	Registers
1	Read no-00 through no-43	40160	40170
2	Read no-45 through no-51	40220	40230

The reason that two MSTR transactions are required to read all of the drive constants, is that drive constant no-44 is an undefined constant. If an attempt is made to read any undefined drive, internal, or diagnostic register the MSTR function will return an error.

The MSTR functions inserted into the ladder logic would look like:

1	p /			
1	00148 00151	40220	001 001	49 7
2	done16 done17	_	())
	00149	40230	OO) fait7	50
3 -	enable i /	MSTR	())
		#0007	001 dane11	51

Segment: 01 Network: #00016 read no-00 --> no-43 on drive#1

In this example, the MSTR blocks are executed sequentially. The Control Block registers for the first MSTR must be loaded with the following data before the MSTR block is executed. This MSTR reads no-00 through no-43.

	CONTROL BLOCK				
Register	Register	Register	Data		
Number	Description	Data	Description		
40160	Operation Code	0002h	0002h = Read from Multiple Registers		
40161	Network Error Code	0000h	Zero the error code		
40162	Number of Registers	002Ch	Read from 44 (= 2Ch) registers		
40163	Drive Address /	0330h	03XX = address of drive Satellite is 03h		
	Data Code		XX30 = data code of drive constant no-00 is 30h.		
40164	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40165	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40166	Routing 3	0000h	This routing register is not used, must be set to 0		
40167	Routing 4	0000h	This routing register is not used, must be set to 0		
40168	Routing 5	0000h	This routing register is not used, must be set to 0		

The Data Block registers for the first MSTR will be filled with the following data after the MSTR is completed.

DATA BLOCK					
Register Register		Register	Data		
Number	Description	Data	Description		
40170	Initialization / Access Limits	READ	Which drive registers can be read / set		
40171	Operation Signal Select	READ	Origin of RUN/STOP and Freq. Ref.		
↓	Ų	⇒	Ų		
40212	Overtorque Detection Time	READ	10.0 sec = 100 (decimal) = 0064h		
40213	Carrier Frequency	READ	1 - 6 (x 2.5 kHz)		

The Control Block registers for the second MSTR must be loaded with the following data before the MSTR block is executed. This MSTR reads no-45 through no-51.

CONTROL BLOCK							
Register	Register	Register	Data				
Number	Description	Data	Description				
40220	Operation Code	0002h	0002h = Read from Multiple Registers				
40221	Network Error Code	0000h	Zero the error code				
40222	Number of Registers	0007h	Read from 7 registers				
40223	Drive Address /	035Dh	03XX = address of drive Satellite is 03h				
	Data Code		XX5D = data code of drive constant no-45 is 5Dh.				
40224	Routing 1	0004h	MB+ node address of Gateway module = 0004h				
40225	Routing 2	0001h	End of routing path = 0001h (NCL requirement)				
40226	Routing 3	0000h	This routing register is not used, must be set to 0				
40227	Routing 4	0000h	This routing register is not used, must be set to 0				
40228	Routing 5	0000h	This routing register is not used, must be set to 0				

The Data Block registers for the second MSTR will be filled with the following data when the MSTR is completed.

DATA BLOCK								
Register	Register	Register	Data					
Number	Description	Data	a Description					
40230	Analog Monitor Gain	READ	2.00 gain = 200 (decimal) = 00C8h					
40231	Power Loss Function	READ	Enable/Disable Power Loss Ride-Thru					
↓	Ų	₩	Ų					
40235	Prohibited Frequency	READ	400.0 Hz = 4000 (decimal) = 0FA0h					
40236	Prohibited Freq. Deadband	READ	25.5 Hz = 255(decimal) = 00FFh					

Example #8 Write all Drive Constants (no-00 through no-51) to Drive #3

This example will write all of the drive constants (no-00 through no-51) to drive #3. After writing the drive constants, the new data will be stored in Non-Volatile memory with the ENTER command. In this example, an input to the PLC will be used to initiate the MSTRs that will write the drive constants. This input will be addressed at 10008.

This example requires multiple MSTR transactions. The following MSTR transactions will be performed:

	MSTR Transaction	Control	Data
		Registers	Registers
1	Write no-00 through no-43	40240	40250
2	Write no-45 through no-47	40300	40310
3	Write no-50 through no-51	40320	40330
4	Write the ENTER command	40140	40149

The reason that three MSTR transactions are required to write all of the drive constants, is that drive constant no-44 is an undefined constant and drive constants no-48 and no-49 are read-only. If an attempt is made to write to any undefined or read-only register the MSTR function will return an error. The fourth MSTR transaction transfers the data into Non-Volatile memory.
The MSTR functions inserted into the ladder logic would look like:

In this example, the MSTR blocks are executed sequentially. The Control Block and Data Block registers for the first MSTR must be loaded with the following data before the MSTR block is executed. This MSTR writes no-00 through no-43.

	CONTROL BLOCK				
Register	Register Register Register		Data		
Number	Description	Data	Description		
40240	Operation Code	0001h	0001h = Write to Multiple Registers		
40241	Network Error Code	0000h	Zero the error code		
40242	Number of Registers	002Ch	Write to 44 (= 2Ch) registers		
40243	Drive Address /	0330h	03XX = address of drive Satellite is 03h		
	Data Code		XX30 = data code of drive constant no-00 is 30h.		
40244	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40245	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40246	Routing 3	0000h	This routing register is not used, must be set to 0		
40247	Routing 4	0000h	This routing register is not used, must be set to 0		
40248	Routing 5	0000h	This routing register is not used, must be set to 0		

	DATA BLOCK			
Register	Register	Register	Data	
Number	Description	Data	Description	
40250	Initialization / Access	WRITE	Which drive registers can be read / set	
10051				
40251	Operation Signal Select	WRITE	Origin of RUN/STOP and Freq. Ref.	
Ų	Ų	₽	Ų	
40292	Overtorque Detection Time	WRITE	10.0 sec = 100 (decimal) = 0064h	
40293	Carrier Frequency	WRITE	1 - 6 (x 2.5 kHz)	

The Control Block and Data Block registers for the second MSTR must be loaded with the following data before the MSTR block is executed. This MSTR writes no-45 through no-47.

	CONTROL BLOCK				
Register	Register	Register	Data		
Number	Description	Data	Description		
40300	Operation Code	0001h	0001h = Write to Multiple Registers		
40301	Network Error Code	0000h	Zero the error code		
40302	Number of Registers	0003h	Write to 3 registers		
40303	Drive Address /	035Dh	03XX = address of drive Satellite is 03h		
	Data Code		XX5D = data code of drive constant no-45 is 5Dh.		
40304	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40305	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40306	Routing 3	0000h	This routing register is not used, must be set to 0		
40307	Routing 4	0000h	This routing register is not used, must be set to 0		
40308	Routing 5	0000h	This routing register is not used, must be set to 0		

DATA BLOCK				
Register	Register	Register	Data	
Number	Description	Data	Description	
40310	Analog Monitor Gain	WRITE	2.00 gain = 200 (decimal) = 00C8h	
40311	Power Loss Function Select	WRITE	Enable/Disable Power Loss Ride-Thru	
40312	# of Auto Restart Attempts	WRITE	Number of Auto Restart Attempts (1-10)	

The Control Block and Data Block registers for the third MSTR must be loaded with the following data before the MSTR block is executed. This MSTR writes no-50 through no-51.

	CONTROL BLOCK				
Register	Register	Register	Data		
Number	Description	Data	Description		
40320	Operation Code	0001h	0001h = Write to Multiple Registers		
40321	Network Error Code	0000h	Zero the error code		
40322	Number of Registers	0002h	Write to 2 registers		
40323	Drive Address /	0362h	03XX = address of drive Satellite is 03h		
	Data Code		XX62 = data code of drive constant no-50 is 62h.		
40324	Routing 1	0004h	MB+ node address of Gateway module = 0004h		
40325	Routing 2	0001h	End of routing path = 0001h (NCL requirement)		
40326	Routing 3	0000h	This routing register is not used, must be set to 0		
40327	Routing 4	0000h	This routing register is not used, must be set to 0		
40328	Routing 5	0000h	This routing register is not used, must be set to 0		

DATA BLOCK				
Register	Register	Register	Data	
Number	Description	Data	Description	
40330	Prohibited Frequency	WRITE	400.0 Hz = 4000 (decimal) = 0FA0h	
40331	Prohibited Freq. Deadband	WRITE	25.5 Hz = 255(decimal) = 00FFh	

The Control Block and Data Block registers for the fourth MSTR must be loaded with the following data before the MSTR block is executed. This MSTR will ENTER data into Non-Volatile memory on drive #3.

CONTROL BLOCK				
Register	Register	Register	Data	
Number	Description	Data	Description	
40140	Operation Code	0001h	0001h = Write to Multiple Registers	
40141	Network Error Code	0000h	Zero the error code	
40142	Number of Registers	0001h	Write to 1 register	
40143	Drive Address /	0300h	03XX = address of drive Satellite is 03h	
	Data Code		XX00 = data code of ENTER register is 00h.	
40144	Routing 1	0004h	MB+ node address of Gateway module = 0004h	
40145	Routing 2	0001h	End of routing path = 0001h (NCL requirement)	
40146	Routing 3	0000h	This routing register is not used, must be set to 0	
40147	Routing 4	0000h	This routing register is not used, must be set to 0	
40148	Routing 5	0000h	This routing register is not used, must be set to 0	

DATA BLOCK			
Register	Register	Register	Data
Number	Description	Data	Description
40149	ENTER data into	0000h	To ENTER data into Non-Volatile memory, set
	Non-Volatile memory		this register to ë0í

Example #9 Read the Drive Status register from Drive #1, #2, and #3

This example will read the drive status register from all of the GPD333s. In this example, an input to the PLC will be used to initiate the MSTRs that will read the drive status. This input will be addressed at 10009.

This example requires multiple MSTR transactions. The following MSTR transactions will be performed:

	MSTR Transaction	Control	Data
		Registers	Registers
1	Read drive status from drive #1	40340	40349
2	Read drive status from drive #2	40350	40359
3	Read drive status from drive #3	40360	40369

The MSTR functions inserted into the ladder logic would look like:

Segment: 01 Network: #00022 read status from drive#1

done24

In this example, the MSTR blocks are executed sequentially. The Control Block registers for the first MSTR must be loaded with the following data before the MSTR block is executed. This MSTR reads drive status from drive #1.

CONTROL BLOCK				
Register Register Register		Data		
Number	Description	Data	Description	
40340	Operation Code	0002h	0002h = Read from Multiple Registers	
40341	Network Error Code	0000h	Zero the error code	
40342	Number of Registers	0001h	Read from 1 register	
40343	Drive Address /	0105h	01XX = address of drive Satellite is 01h	
	Data Code		XX05 = data code of drive status register is 05h	
40344	Routing 1	0004h	MB+ node address of Gateway module = 0004h	
40345	Routing 2	0001h	End of routing path = 0001h (NCL requirement)	
40346	Routing 3	0000h	This routing register is not used, must be set to 0	
40347	Routing 4	0000h	This routing register is not used, must be set to 0	
40348	Routing 5	0000h	This routing register is not used, must be set to 0	

The Data Block registers for the first MSTR will be filled with the following data after the MSTR is completed.

DATA BLOCK				
Register	er Register Data			
Number	Description	Data	Description	
40349	Drive Status	READ	RUN/STOP, FWD/REV, Fault Status of Drive #1	

The Control Block registers for the second MSTR must be loaded with the following data before the MSTR block is executed. This MSTR reads the drive status from drive #2.

CONTROL BLOCK				
Register	Register Register Data		Data	
Number	Description	Data	Description	
40350	Operation Code	0002h	0002h = Read from Multiple Registers	
40351	Network Error Code	0000h	Zero the error code	
40352	Number of Registers	0001h	Read from 1 register	
40353	Drive Address /	0205h	02XX = address of drive Satellite is 02h	
	Data Code		XX05 = data code of drive status register is 05h	
40354	Routing 1	0004h	MB+ node address of Gateway module = 0004h	
40355	Routing 2	0001h	End of routing path = 0001h (NCL requirement)	
40356	Routing 3	0000h	This routing register is not used, must be set to 0	
40357	Routing 4	0000h	This routing register is not used, must be set to 0	
40358	Routing 5	0000h	This routing register is not used, must be set to 0	

The Data Block registers for the second MSTR will be filled with the following data after the MSTR is completed.

DATA BLOCK							
Register	Register	Register	Data				
Number	Description	Data	Description				
40359	Drive Status	READ	RUN/STOP, FWD/REV, Fault Status of Drive #2				

The Control Block registers for the third MSTR must be loaded with the following data before the MSTR block is executed. This MSTR reads drive status from drive #3.

	CONTROL BLOCK							
Register	Register	Register	Data					
Number	Description	Data	Description					
40360	Operation Code	0002h	0002h = Read from Multiple Registers					
40361	Network Error Code	0000h	Zero the error code					
40362	Number of Registers	0001h	Read from 1 register					
40363	Drive Address /	0305h	03XX = address of drive Satellite is 03h					
	Data Code		XX05 = data code of drive status register is 05h					
40364	Routing 1	0004h	MB+ node address of Gateway module = 0004h					
40365	Routing 2	0001h	End of routing path = 0001h (NCL requirement)					
40366	Routing 3	0000h	This routing register is not used, must be set to 0					
40367	Routing 4	0000h	This routing register is not used, must be set to 0					
40368	Routing 5	0000h	This routing register is not used, must be set to 0					

The Data Block registers for the third MSTR will be filled with the following data after the MSTR is completed.

DATA BLOCK							
Register	Register	Register	Data				
Number	Description	Data	Description				
40369	Drive Status	READ	RUN/STOP, FWD/REV, Fault Status of Drive #3				

Chapter 10 Diagnostics and Troubleshooting

- Gateway LEDs
- Satellite LED
- MB+ MSTR Error Codes

Gateway LEDs

The Gateway module has four LEDs. The activity of these LEDs is explained in the following tables.

POWER						
Blir	Blink Pattern Timing Status					
Green	Solid	-	24 VDC power is applied to the Gateway module			

	HEALTH					
Blir	nk Pattern		Timing	Status		
Green	Continuous Slow Blinks	ON OFF	640 msec 640 msec	The Gateway module is executing a power-up sequence		
Green	Continuous Moderate Blinks	ON OFF	320 msec 640 msec	The Gateway module is in normal operating mode. No MB+ transactions are currently being processed.		
Green	Continuous Fast Blinks	ON OFF	160 msec 320 msec	A ëcable lossí situation has occurred. All drives are commanded to stop. Power cycle is required to reset this condition. (ëCable lossí must be enabled for this situation to occur - See chapter 2)		
Green	Two Blinks	ON OFF	160 msec 160 msec	The Gateway module is in normal operating mode. A MB+ transaction is currently being processed.		
Red	One Blink	ON OFF	160 msec 1120 msec	An error response was received from a Satellite subnode.		
Red	Two Blinks	ON OFF	160 msec 320 msec	A time-out error has occurred while the Gateway was waiting for a response from a Satellite board.		
Red	Three Blinks	ON OFF	160 msec 320 msec	A CAN transmission error has occurred.		
Red	Solid		-	Invalid Gateway switch setting		

	COMM					
Blink Pattern Timing		Timing	Status			
Off -		-	No activity is present on the NCL CAN data bus			
Green	One Blink	ON	160 msec	Activity is present on the NCL CAN data bus		
Red	Continuous Fast Blinks	ON OFF	160 msec 320 msec	A ëcable lossí situation has occurred. All drives are commanded to stop. Power cycle is required to reset this condition. (ëCable lossí must be enabled for this situation to occur - See chapter 2)		

	STATUS					
Blir	nk Pattern		Timing	Status		
Green	ContinuousS Iow Blinks	ON OFF	340 msec 640 msec	This MB+ node is monitoring the MB+ link. It must monitor the MB+ link (offline) for 5 seconds. During this time it monitors all other active nodes on the link and builds the active station table.		
Green	ContinuousR apid Blinks	ON OFF	80 msec 80 msec	This MB+ node is operating normally. It is successfully receiving and passing the token.		
Green	Two Rapid Blinks	ON OFF	160 msec 160 msec	This MB+ node is permanently in the idle state. It is monitoring other nodes on the MB+ link pass the token, but the token is never passed to this node. This node may have a bad transmitter.		
Green	Three Rapid Blinks	ON OFF	160 msec 160 msec	This MB+ node is not finding any other nodes on the MB+ link. It is claiming and winning the token, but has no other node to pass it to. This node can periodically disrupt communication on the link. This condition can indicates a problem with the communication wiring.		
Green	Four Rapid Blinks	ON OFF	160 msec 160 msec	This MB+ node has found another node on the MB+ link which has an identical node address. This node will remain offline, monitoring the MB+ link until the duplicate node is not heard from for 5 seconds		

Satellite LED

The Satellite board has one LED. The activity of this LED is explained in the following table.

	NETWORK STATUS					
Blink Pattern		Timing		Status		
Green	Continuous Slow Blinks	ON OFF	640 msec 640 msec	The Satellite board is executing a power-up sequence		
Green	Continuous Moderate Blinks	ON OFF	320 msec 960 msec	The Satellite board is in normal operating mode. No NCL transactions are currently being processed.		
Green	Three Fast Blinks	ON OFF	160 msec 160 msec	The Satellite board is in normal operating mode. A valid NCL transaction is currently being processed.		
Red	One Blink	ON OFF	160 msec 1120 msec	An invalid data code has been received by the satellite		
Red	Two Blinks	ON OFF	160 msec 320 msec	A time-out error has occurred while the satellite was waiting for a response from the drive.		
Red	Three Blinks	ON OFF	160 msec 320 msec	A CAN transmission error has occurred.		
Red	Solid		-	Invalid Satellite switch setting		

If an error occurs during an MSTR operation, a hexadecimal error code will be displayed in the second register of the control block (the top section). The form of the code is Mmss, where

- M represents the major code
- **m** represents the minor code
- **ss** represents a subcode

A list of error codes appears in the following table.

Error Code (Hex)	Definition						
1001	User-initiated abort						
2001	Invalid operation type						
2002	User parameter changed						
2003	Invalid length						
2004	Invalid o	ffset					
2005	Invalid le	ength + offset					
2006	Invalid s	ave device data area					
2007	Invalid s	ave device network area					
2008	Invalid s	ave device network routing					
2009	Route ed	qual to your own address					
200A	Attempti	ng to obtain more global data words than available					
30ss	Modbus	slave exception response					
	SS	DEFINITION					
	01	Slave device does not support the requested operation					
	02	Nonexistent slave device registers requested OR satellite did not					
		respond					
	03	Invalid data value requested					
	04	Unassigned					
	05	Slave has accepted long-duration program command					
	06	Function cannot be performed - a long duration command is in effect					
	08-FF	Unassigned					
4001	Inconsis	tent Modbus slave response					
5001	Inconsis	nconsistent network response					
6mss	Routing	failure					
	m	DEFINITION					
	1	Routing register 1 (local network)					
	2	Routing register 2					
	3	Routing register 3					
	4	Routing register 4					
	5	Routing register 5					
	SS	DEFINITION					
	01	No response received					
	02	Program access denied					
	03	Node off-line and unable to communicate					
	04	Exception response received					
	05	Router node data paths busy					
	06	Slave device down					
	07	Bad destination address					
	08	Invalid node type in routing path					
	10	Slave has rejected the command					
	20	Initiated transaction forgotten by slave device					
	40	Unexpected master output path received					
	80	Unexpected response received					

Appendix A Data Codes

- Satellite Drive Registers
- Satellite Internal Registers
- Satellite Diagnostic Registers
- Gateway Internal Registers
- Gateway Diagnostic Registers

DATA	FUNCTION	BIT	DATA	DESCRIPTION
CODE		NO.	SET	
00	NCL Satellite Memory Group		0000	Drive Registers Group / NVRAM ENTER
			F000	Satellite Internal Registers Group
			F100	Satellite Diagnostic Registers Group
01	Operational Signals	0	0	Stop
			1	Run
		1	0	Forward Run
			1	Reverse Run
		2	1	Multi-Function Input 1 is selected
		3	1	Multi-Function Input 2 is selected
		4	1	Multi-Function Input 3 is selected
		5	1	Fault Reset
		6	1	Not Used
		7	1	Not Used
02	Frequency Reference / Output Frequency			0.00 - 400.00 (Hz)
				Writing to this register will provide a frequency reference to the drive.
				Reading from this register will return the actual output frequency to the PLC.
03	Not Supported			
04	Not Supported			
05	Status (Read Only)	0	1	Drive Running
		1	1	Reverse Running
		2	1	Inverter Operation is Ready
		3	1	Fault Occurring
		4	1	Not Used
		5	1	Multi-Function Output 1 is closed
		6	1	Multi-Function Output 2 is closed
		7	1	Multi-Function Output 3 is closed

DATA	FUNCTION	BIT	DATA	DESCRIPTION
CODE		NO.	SET	
06	Fault Status 1 (Read Only)	0	1	UV1 - Undervoltage
		1	1	OV - Overcurrent
		2	1	GF - Ground fault
		3	1	OV - Overvoltage
		4	1	OH - Heatsink Overheat
		5	1	OL1 - Electronic Thermal Overload detected
		6	1	OL2 - E.T.O.L. Operated at 150% for 1 min.
		7	1	OL3 - Overtorque Detection
07	Fault Status 2 (Read Only)	0	1	EF3 - External Fault at terminal 3
		1	1	EF4 - External Fault at terminal 4
		2	1	EF5 - External Fault at terminal 5
08	Frequency Reference / Output Frequency			0.00 - 400.00 (Hz)
				Writing to this register will provide a frequency reference to the drive.
				<u>Reading</u> from this register will return the actual output frequency to the PLC.
09	Not Supported			
0A	Not Supported			
0B	Output Current			1000 = 100% of rated output current
0C	Not Supported			
0D	Not Supported			
0E	Main Speed Reference Input			0 - 2048 = 0.0 - 10.0 volts at terminal 8
	(A/D Converted Value)			0 - 2048 = 4 mAmps - 20 mAmps at terminal 9
0F	Not Supported			
10	Sequence Input Signal Status (Read only)	0	1	Terminal 1
		1	1	Terminal 2
	1= Closed, 0= Open	2	1	Terminal 3
		3	1	Terminal 4
		4	1	Terminal 5
		5 - 7	N/A	Not Used

DATA CODE	FUNCTION	BIT NO.	DATA SET	DESCRIPTION
11	Alarm Status (Read only)	0	1	UV - Undervoltage
		1	1	OV - Overvoltage
		2	1	OH - Thermistor exceeded rating
		3	1	BB - Baseblock
		4	1	EF - External Fault
		5 - 7	N/A	Not Used
12	CPF Contents (Read only)	0	N/A	Not Used
		1	N/A	Not Used
		2	N/A	Not Used
		3	N/A	Not Used
		4	1	CPF04 (Constant fault)
		5	1	CPF05 (A/D converter fault)
		6	1	CPF06 (Option fault)
		7	N/A	Not Used
1F	Operational Command 1	0		Frequency Reference Origin - see Chapter 8 for details
		1		Operation Signal Origin - see Chapter 8 for details
		2	N/A	Not Used
		3	N/A	Not Used
		4	N/A	Do Not Use with NCL [Write - in to EEPROM]
		5	N/A	Not Used
		6	1	Do Not Use with NCL [Initialize (2- wire sequence)]
		7	1	Do Not Use with NCL [Initialize (3- wire sequence)]

DATA	CONST.	CONSTANT	BIT	DATA	LIMITS	INIT-	INCRE	REFERENCE
CODE	no -	FUNCTION	NO.	SET	SET		MENT	SECTION
30	no-00	Initialization/ Access limits			00 - 09	01		3.2
31	no-01	Operation Signal Selection 1	0	Freq	uency Reference Origin - see Chapter 8			3.3
			1	O	peration Signal Origin - see Chapter 8			
			2	0	Ramp to Stop	0000		
				1	Coast to Stop			
			3	0	Enable Output Voltage Limit			
				1	Disable Output Voltage Limiter			
32	no-02	Maximum Output Frequency			50.0-400.0 (Hz)	60.0		3.4
33	no-03	Maximum Output Voltage			0.1-255.0 (V)	230.0		
					0.1-510.0 (V)	460.0		
34	no-04	Output Frequency at Max. voltage			0.2-400.0 (Hz)	60.0		
35	no-05	Midpoint Output Frequency			0.1-399.9 (Hz)	01.5	0.1	
36	no-06	Midpoint Output Voltage			0.1-255.0 (V)	12.0		
					0.1-510.0 (V)	24.0		
37	no-07	Minimum Output Frequency			0.1-10.0 (Hz)	01.5		
38	no-08	Output Voltage at Minimum			0.1-50.0 (V)	12.0	-	
		Output Frequency			0.1-100.0 (V)	24.0	-	
39	no-09	Acceleration time 1			0.0-600.0 (s)			3.5
ЗA	no-10	Deceleration Time 1				10.0	0.1	
3B	no-11	Acceleration Time 2						
3C	no-12	Deceleration Time 2						
3D	no-13	Frequency Reference 1			0.0-400.0 (Hz)			3.6
3E	no-14	Frequency Reference 2						
3F	no-15	Frequency Reference 3				0.0	0.1	
40	no-16	Frequency Reference 4						
41	no-17	Jog Reference Frequency				6.0		3.7

DATA	CONST.	CONSTANT	BIT	DATA	LIMITS	INITIAL	INCRE	REFERENCE
CODE	no -	FUNCTION	NO.	SET		SET	MENT	SECTION
42	no-18	Motor Protection Selection	0	0	Enable Elect. Therm. Motor O.L.			3.7
				1	Disable Elect. Therm. Motor O.L.			
			1	0	Variable Torq. Elect. Therm. Motor O.L.	0000		
				1	Constant Torq. Elect. Therm. Motor O.L.			
			2		Not Used			
			3		Not Used			
43	no-19	Motor Rated Current			10% to 120% of GPD333 Rated Output Current		0.1	3.8
44	no-20	Operation Signal Selection 2	0	0	Enable Reverse Run			3.9
				1	Disable Reverse Run			
			1		Not Used	0000		
			2		Not Used			
			3	0	Enable Stall Prevent on Decel.			
				1	Enable Stall Prevent on Decel.			
45	no-21	Output Monitor / S-Curve Enable	0		Not Used			3.10
			1	0	Monitor Output Freq. (Term 11 & 12)			
				1	Monitor Output Current (Term 11 & 12)	0000		
			2	0	Disable S-curve			
				1	Enable S-curve .2 sec			
			3		Not Used			
46	no-22	Command Signal Gain			0.01-2.00	1.00	0.01	3.11
47	no-23	Command signal Bias			-1.00 - 1.00	0.00		
48	no-24	Command Signal Upper Limit			0 - 110 (%)	100	1	
49	no-25	Command Signal Lower Limit				0		

DATA	CONST.	CONSTANT	BIT	DATA	LIMITS	INITIAL	INCRE	REFERENCE
CODE	no -	FUNCTION	NO.	SET		SET	MENT	SECTION
4A	no-26	DC Injection Braking Current	Braking Current		0-100 (%)	50	1	3.12
4B	no-27	DC Injection Braking Time at Stop			0.0 - 5.0 (s)	0.0	0.1	3.12
4C	no-28	DC Injection Braking Time at Start			0.0 - 5.0 (s)	0.0	0.1	3.12
4D	no-29	Auto Torque Boost Gain			0.0 - 3.0	1.0	0.1	3.13
4E	no-30	Stall Prevent Level During Accel			30 - 200 (%)	170	1	3.14
4F	no-31	Stall Prevent Level at Set Speed			30 - 200 (%)	160	1	3.14
50	no-32	Multi-function Input - Terminal 3			00 - 13	13	1	3.15
51	no-33	Multi-function Input - Terminal 4			01 - 13	01	1	3.15
52	no-34	Multi-function Input - Terminal 5			01 - 14	03	1	3.15
53	no-35	Multi-function Analog Input			00 - 04	00	1	3.16
54	no-36	Multi-function Output Relay	ulti-function Output Relay		00 - 10	05	1	3.17
55	no-37	Multi-function Output - Terminal 13	Iulti-function Output - Terminal 13		00 - 10	00	1	3.18
56	no-38	Multi-function Output - Terminal 14			00 - 10	01	1	3.18
57	no-39	Frequency Detection Level			0.0 - 400.0 (Hz)	0.0	0.1	3.19
58	no-40	Overtorque Detection Function Select	0	0	Disable Overtorque Detection (OTD)			3.20
				1	Enable Overtorque Detection (OTD)			
			1	0	OTD only at set Frequency			
				1	OTD always except during Stop	0000		
			2	0	Continued Operation after Detection			
				1	Coast to Stop after Detection			
			3	N/A	Not Used			
59	no-41	Overtorque Detection Level			30 - 200 (%)	160	1	3.20
5A	no-42	Overtorque Detection Time			0.1 - 10.0 (s)	0.1	0.1	3.20
5B	no-43	Carrier Frequency			1-6(x 2.5kHz)	4	1	3.21
5C	no-44	Not Used						
5D	no-45	Analog Monitor Gain			0.01 - 2.00	1.00	0.01	3.10

DATA	CONST.	CONSTANT	BIT	DATA	LIMITS	INITIAL	INCRE	REFERENCE
CODE	no -	FUNCTION	NO.	SET		SET	MENT	SECTION
5E	no-46	Power Loss Function Select	0	0	Disable Power loss Ride-thru			3.22
				1	Enable Power Loss Ride-thru			
			1	N/A	Not Used	0000		
			2	N/A	Not Used			
			3	N/A	Not Used			
5F	no-47	No. Auto- restart Attempts			0 - 10	0	1	3.23
60	no-48	Fault Record (read only)						3.24
61	no-49	E-PROM Number (read only)						3.25
62	no-50	Prohibited Frequency			0.0 -400.0(Hz)	0.0	0.1	3.26
63	no-51	Prohibited Frequency Deadband			0.0 - 25.5(Hz)	1.0	0.1	3.26
64	no-52	Not Used						
65	no-53	Not Used						
66	no-54	Not Used						
67	no-55	Not Used						
68	no-56	Not Used						
69	no-57	Not Used						
6A	no-58	Not Used						
6B	no-59	Not Used						
6C	no-60	Not Used						
6D	no-61	Not Used						
6E	no-62	Not Used						
6F	no-63	Not Used						
70	no-64	Not Used						
71	no-65	Not Used						

Satellite Internal Registers

DATA CODE	FUNCTION	READ/WRITE STATUS	DATA RANGE	VALUE AT POWER-UP	DESCRIPTION
00	NCL Satellite Memory Group	R/W	0000h	0000h	Drive Registers Group
			F000h		Satellite Internal Registers Group
			F100h		Satellite Diagnostic Registers Group
01	Global Data Enable/Disable	R/W	0	0	Global Data is Disabled
			1		Global Data is Enabled
02	Global Reference Multiplier	R/W	0.000 -9.999	1.000	Global Frequency Reference Multiplier
03	Satellite Version and Revision	R	VVRRh	-	VV = Satellite Software Version Number
					RR = Satellite Software Revision Number

Satellite Diagnostic Registers

DATA CODE	FUNCTION	READ/WRITE STATUS	DATA RANGE	VALUE AT POWER-UP	DESCRIPTION
00	NCL Satellite Memory Group	R/W	0000h	0000h	Drive Registers Group
			F000h		Satellite Internal Registers Group
			F100h		Satellite Diagnostic Registers Group
01	Satellite Run Time	R/W	-	0	Number of minutes the satellite has been running since power-
					up
02	Number of Standard Message Blocks	R/W	-	0	Number of standard message blocks that have been attempted
					by the satellite
03	Number of Global Message Blocks	R/W	-	0	Number of global message blocks that have been attempted by
					the satellite
04	Number of CAN Status Errors	R/W	-	0	Number of CAN status errors
05	Number of CAN Overrun Errors	R/W	-	0	Number of CAN overrun errors
06	Number of Incomplete	R/W	-	0	Number of times NCL data communications were incomplete
	Communications				
07	Number of CAN Transmit Interrupts	R/W	-	0	Number of CAN transmit interrupts that have occurred

DATA CODE	REGISTER FUNCTION	READ/WRITE STATUS	DATA RANGE	VALUE AT POWER-UP	DESCRIPTION		
F000	Global Master Node Number	R/W	1 - 64	0	This register indicates the MB+ node addres will be sending global write data The gate global write data from this node.	ss of the way will	node that only accept
F001	Global Number of Registers	R/W	1 - 3	2	This register indicates the quantity of global number of registers = 3)	write reo	gisters (max
F002	Global Starting Register	R/W	00h - 71h	01h	This register indicates the drive data code for write register	or the sta	arting global
F003	Gateway Address	R	1 - 14	-	This register indicates the NCL address of the	his gatev	vay
F004	Gateway Baudrate	R	-	-	This register indicates the baudrate of this g 500 = 500 kbaud 250 = 250 kbaud 125 = 125 kbaud	ateway	
F005	Gateway Docking Dip Switch	R	-	-	This register contains the state of the 8	BIT#	SWITCH#
					position switch located on the gateway	0	1
					docking board. The most significant byte	1	2
					is set to zero. The least significant byte	2	3
					is mapped as indicated at the right.	3	4
						4	5
						5	6
						6	7
						7	8
F006	NCL Standard Message Timeout	R/W	1 - 255	200	Sets the maximum time a standard message	ge can ta	ake to
					complete before a timeout error occurs. The	value h	as a range of
					1 to 255. The actual timeout value is the va	lue of thi	is register
					multiplied by 10 msec. This register default	s to 200	(2 second)
5007		D 444	4 055	50	at power-up.		
F007	NCL Internal Register Timeout	R/W	1 - 255	50	Sets the maximum time an internal register	messag	e can take to
					The value has a range of 1 to 255.	ual timaa	ut voluo io
					the value of this register multiplied	iai limeo	
					by 10 msec. This register defaults to 50 (50	0 msec)	at power-up

Gateway Internal Registers (continued)

DATA CODE	REGISTER FUNCTION	READ/WRITE STATUS	DATA RANGE	VALUE AT POWER-UP	DESCRIPTION
F008	NCL Diagnostic Register Timeout	R/W	1 - 255	50	Sets the maximum time a diagnostic register message can take to complete before a timeout error occurs. The value has a rage of 1 to 255. The actual timeout value is the value of this register multiplied by 10 msec. This register defaults to 50 (500 msec) at power-up.
F009	Gateway Software Version / Revision	R	VVRRh	-	VV = Gateway Software Version Number
					RR = Gateway Software Revision Number

Gateway Diagnostic Registers

DATA CODE	REGISTER FUNCTION	READ/WRITE STATUS	DATA RANGE	VALUE AT POWER-UP	REGISTER DESCRIPTION
F100	Gateway Run Time	R/W	-	0	Number of minutes the gateway has been running since power-up
F101	Number of Failed Message Blocks	R/W	-	0	Number of failed message blocks (total) processed by the
					gateway (set to zero at power-up)
F102	Number of Standard Message Blocks	R/W	-	0	Number of standard message blocks processed by the gateway
					(set to zero at power-up)
F103	Number of Internal Message Blocks	R/W	-	0	Number of internal message blocks processed by the gateway
					(set to zero at power-up)
F104	Number of Global Message Blocks	R/W	-	0	Number of global message blocks processed by the gateway (set
					to zero at power-up)
F105	Number of Diagnostic Message	R/W	-	0	Number of diagnostic message blocks processed by the gateway
	Blocks				(set to zero at power-up)

Appendix B Product Specifications

MB + / NCL Gateway Module				
Ambient Temperature	-10 to +40 degrees C (+14 to +104 degrees F)			
Storage Temperature	-20 to +60 degrees C (-4 to +140 degrees F)			
Relative Humidity	90% noncondensing			
Altitude	3300 feet			
Vibration	1G at less than 20 Hz, 0.2 G at 20 - 50 Hz			
Input Power	Voltage:			
	11 - 25 VDC			
	Current:			
	220 mAmps			

GPD333 Satellite Board				
Ambient Temperature	-10 to +40 degrees C (+14 to +104 degrees F)			
Storage Temperature	-20 to +60 degrees C (-4 to +140 degrees F)			
Relative Humidity	90% noncondensing			
Altitude	3300 feet			
Vibration	1G at less than 20 Hz, 0.2 G at 20 - 50 Hz			
Input Power	Voltage:			
	11 - 25 VDC			
	Current:			
	40 mAmps			

Appendix C Spare Parts List

Description	Source	Part Number				
MB+ / NC	L Gateway Modul	е				
MB+ / NCL Gateway Kit	MagneTek	CM005				
Gateway Module NCL Mating Connector	Phoenix	1757048 MSTBR2.5/5-ST-5.08				
MB+ / NCL Technical Manual	MagneTek	TM4334				
GPD333 N	ICL Satellite Boa	rd				
GPD333 NCL Satellite Kit	MagneTek	CM006				
GPD333 NCL Satellite Mating Connector	Phoenix	1792278 MVSTBR2.5/5-ST5.08				
GPD333 NCL Satellite Installation Sheets	MagneTek	02Y00025-0385				
Miscellaneous						
NCL Network Terminating Resistors	MagneTek	05P00349-0001				

Data subject to change without notice. NCL, GPD, and VCD are trademarks of MagneTek, Inc. Modicon, ModConnect, Modbus, Modbus Plus and 984 are trademarks of Modicon, Inc.

MagneTek Drives and Systems 16555 West Ryerson Road New Berlin, WI 53151 (800) 541-0939, (414) 782-0200, FAX (414) 782-3418

TM 4334 © 1996 MagneTek, Inc. 1/97